
Logic Programmierung SS13
Exercise Sheet 10 (due 10.07.2013)

aaProf. Dr. Jürgen Giesl Carsten Otto

Notes:

• To solve the programming exercises you can use the Prolog interpreter SWI-Prolog, available for free
at http://www.swi-prolog.org. For Debian and Ubuntu it su�ces to install the swi-prolog package.
You can use the command �swipl� to start it and use �[exercise10].� to load the clauses from �le
exercise10.pl in the current directory.

• Solve these exercises in groups of three! For other group sizes less points are given!

• The solutions must be handed in directly before (very latest: at the beginning of) the exercise
course on Wednesday, 10.07.2013, in lecture hall AH 2. Alternatively you can drop your solutions into
a box which is located right next to Prof. Giesl's o�ce (this box is emptied a few minutes before the
exercise course starts).

• Please write the names and immatriculation numbers of all students on your solution. Also please
staple the individual sheets!

Important: This sheet is only relevant for students attending the V3B version of the lecture.

Exercise 1 (Uni�cation): (6 points)

Please implement the binary predicate unify in Prolog. This predicate should have the same semantics as
unify_with_occurs_check, but you may not use unify_with_occurs_check in your solution.

Hints:

• Use the predicate == to check terms for syntactical equality.

• Also use the predicates var and =...

Exercise 2 (Prolog interpreter): (4 points)

Based on the meta-interpreter presented in the lecture1, please implement a meta-interpreter for pure logic
programs that, for each found solution, prints the instantiated rules and facts that were used to �nd the
solution (in the order they were used).
As an example, for the path program from exercise sheet 7, using the query ?- prove(path(a, a, s(s(0)))

should give the following output after pressing ';' twice, where the output of prove is shown in italics.

?- prove(path(a,a,s(s(0)))).

path(a,a,s(s(0))) :- true.

true ;

path(a,a,s(s(0))) :- edge(a,b),path(b,a,s(0)).

edge(a,b) :- true.

path(b,a,s(0)) :- edge(b,a),path(a,a,0).

edge(b,a) :- true.

path(a,a,0) :- true.

true ;

false.

Hints:

1Please also have a look at the end of this exercise.

1

Logic Programmierung SS13
Exercise Sheet 10 (due 10.07.2013)

• Take care to only print clauses that lead to a solution!

• Yoy may use the prede�ned predicate append/3 to append lists.

The following program contains the path program and the basic meta-interpreter from the lecture. This �le
also can be downloaded from the lecture homepage.

path (X, X, Y) .
path (X, Y, s (Z)) :− edge (X, A) , path (A, Y, Z) .
path (X, Y, Z) :− eps (X, A) , path (A, Y, Z) .

edge (a , b) .
edge (b , a) .
edge (c , d) .
edge (d , b) .

eps (b , c) .

%prove (t rue) :− ! .
%prove ((Goal1 , Goal2)) :− ! , prove (Goal1) , prove (Goal2) .
%prove (Goal) :− c l au s e (Goal , Body) , prove (Body) .

Exercise 3 (IO): (8 points)

Please write a predicate tc/2 that reads a graph structure from a �le, computes the transitive closure of all
edges and writes back the result to another �le. The �rst argument of tc should be the input �le, the second
argument is the output �le.
As an example, if the input �le contains

edge(a, b).

edge(b, c).

edge(b, d).

edge(c, e).

the output �le must contain these edges and, in addition, the following edges which result from transitivity:

edge(a, c).

edge(a, e).

edge(a, d).

edge(b, e).

Hints:

• First collect all edges from the input �le in a list.

• Based on the list of known edges, �nd combinations of edges that are not yet contained in the list. For
example, edge(a, b) and edge(b, d) may be combined to edge(a, d), which is not in the initial list.

• Extend the list of known/computed edges until no further edge can be found. Only then output the
edges.

2

