
Logic Programmierung SS13
Exercise Sheet 2 (due 08.05.2013)

aaProf. Dr. Jürgen Giesl Carsten Otto

Notes:

• To solve the programming exercises you can use the Prolog interpreter SWI-Prolog, available for free at
http://www.swi-prolog.org. For Debian and Ubuntu it su�ces to install the swi-prolog package. You
can use the command �swipl� to start it and use �[exercise1].� to load the facts from �le exercise1.pl
in the current directory.

• Solve these exercises in groups of three! For other group sizes less points are given!

• The solutions must be handed in directly before (very latest: at the beginning of) the exercise
course on Wednesday, 08.05.2013, in lecture hall AH 2. Alternatively you can drop your solutions into
a box which is located right next to Prof. Giesl's o�ce (this box is emptied a few minutes before the
exercise course starts).

• Please write the names and immatriculation numbers of all (three) students on your solution. Also
please staple the individual sheets!

Exercise 1 (Programming in Prolog): (6 + 2 + 1 + 1 + 4 = 14 points)

Important: In addition to handing in the solution on paper, please also mail your the solutions for this
exercise to lp13-hiwis@i2.informatik.rwth-aachen.de. Indicate your immatriculation numbers in the
subject of the mail and inside the Prolog �le.

In this exercise we implement some Prolog predicates that help with substituting variables in terms and
formulas. In this setting, terms and formulas are built using the following function symbols:

symbol meaning

forall(Var, Sub) Var is the name of the bound variable, Sub is the subformula

neg(Sub) Sub is the negated subformula

and(SubA, SubB) SubA and SubB are the two subformulas

funcPred(Name, Args) Name is the name of the function or the predicate symbol, Args is a list contai-
ning the arguments

variable(Var) Var is the name of the variable

In a similar way, we could de�ne the symbols exists and or, which are handled likewise. To save some
unnecessary work, these symbols are not used in this exercise (the resulting program can be extended easily,
though).
As an example, the formula (∀X f(Z,X)) ∧ ¬g(Y) can be written as the Prolog term

and(forall(x, funcPred(f, [variable(z), variable(x)])), neg(funcPred(g, [variable(y)])))

You may not use any prede�ned Prolog predicates in this exercise (unless allowed explicitly)!

Lists

Lists in Prolog are represented by terms built over the signature Σ = Σ0∪Σ2 with Σ0 = {[]} and Σ2 = {.}.
The symbol [] denotes the empty list, while the term .(X,XS) denotes the list starting with the element
X (called the head of the list) and having the list XS as the remaining list (called the tail of the list). Thus,
a list in Prolog containing the three numbers 2, 3 and 5 would be written as .(2,.(3,.(5,[]))). This is
the standard representation internally used by Prolog.
However, Prolog also knows a more comfortable way to write lists. The term .(X,XS) can also be written
as [X|XS]. With this representation, the above list is written as [2|[3|[5|[]]]]. To save brackets, the

I

1

Logic Programmierung SS13
Exercise Sheet 2 (due 08.05.2013)

Lists (cont)

representation can be shortened by just enumerating elements in the order they appear in the list: [2,3,5].
While this list representation is easier to use for humans, it is equivalent to the internal representation
used in Prolog. You can use both representations and even mix them within one Prolog program.
As an example for an algorithm working on lists, we write a binary predicate hasLast in Prolog where
hasLast(XS, X) is true i� X is the last element of the list XS:

hasLast ([X] , X) .
hasLast ([X|XS] , Y) :− hasLast (XS, Y) .

The following solution is also correct, but uses the less readable list representation.

hasLast (. (X, []) , X) .
hasLast (. (X, XS) , Y) :− hasLast (XS, Y) .

a) To prepare for the following exercise parts, we need predicates that help us deal with lists. Implement
each of the following predicates in Prolog:

predicate true i� example evaluating to true

contained(X,XS) X is contained in the list XS contained(a,[b,a])

notContained(X,XS) X is not contained in the list XS notContained(a,[b,c])

app(XS,YS,ZS) appending the lists XS and YS results in
the list ZS

app([a,b],[c],[a,b,c])

removeDuplicates(XS,YS) only the elements of the list XS appear
in YS, each exactly once

removeDuplicates([a,b,a,c],

[a,b,c])

union(XS,YS,ZS) ZS contains the elements of XS and YS,
but each exactly once

union([a,b,c],[b,a,d],

[a,b,c,d])

remove(XS,X,ZS) ZS is the list resulting by removing all
occurrences of the element X from the
list XS

remove([a,b,c,b],b,[a,c])

Hints:

• Make use of predicates you already de�ned, for example the predicate removeDuplicates is very
useful for union.

• To test if a and b are di�erent, you should use the prede�ned predicate \=. Example: a \= b is
true.

b) Write a predicate variables(Formula, Variables) that computes a list of variable names used in
terms and formulas built using only the constructs neg, and, funcPred, and variable. As an example,

variables(and(funcPred(f, [variable(x), funcPred(g, [])]), funcPred(h,

[variable(x)])), [x])

is true.

Take care that each variable name is contained at most once in the list of the second argument!

Hints:

• It may be useful to de�ne and use a predicate that computes the variables contained in a list of
formulas.

c) Extend the predicate variables from the previous exercise part so that it is also able to deal with
formulas constructed using forall. Here, variables(Formula, Variables) should only compute the
free variables in Formula.

As an example, variables(F, [z, y] is true where F is the long example formula shown at the beginning
of the whole exercise. The variable x is not part of the result because it only occurs at bound positions
inside the formula.

2

Logic Programmierung SS13
Exercise Sheet 2 (due 08.05.2013)

d) In the last two parts of this exercise, we consider substitutions. A substitution is a list of pairs, where one
component of each pair is a variable and the other component is the term that the variable is replaced
with. We represent substitutions using a list where each pair of the substitution is encoded just as two
elements of a list. As an example the substitution [X/f, Y/Z] is represented as [x, funcPred(f,[]), y,

variable(z)]. Note that in this representation, we only mention the names of the replaced variables x
and y (instead of the representation using the function symbol variable). The variables are substituted
by terms. So to specify that y is substituted by z, we use the term variable(z).

You may assume that each variable is only replaced once, so [x, funcPred(f, []), x, funcPred(g,

[])] is not a valid substitution.

Implement a predicate notInRange(Subst, Variable) that is true if the variables in the domain of the
substitution are only replaced with terms that do not contain Variable. As an example, notInRange([x,
funcPred(f, []), y, variable(x)], x) is false (because x occurs in the term variable(x)).

e) Finally, implement a predicate substitute(Formula, Substitution, Result). The term resp. formula
in Result is the result of applying the substitution Substitution to Formula.

Here, you need to take care that bound variables are not substituted (implementing another predicate
might be helpful). Furthermore, the predicate is false if we substitute with a term containing a free
variable which will be bound in Result. De�nition 2.1.8 part (4) gives more details on these two aspects.

Example 1:

substitute(and(funcPred(f, [variable(x)]), funcPred(f, [variable(y)])),

[x, funcPred(h, []), y, variable(x)],

and(funcPred(f, [funcPred(h, [])]), funcPred(f, [variable(x)])))

is true.

Example 2:

substitute(forall(x, funcPred(f, [variable(x), variable(y)])),

[x, funcPred(h, []), y, variable(x)],

forall(x, funcPred(f, [variable(x), variable(x)])))

is false (because when replacing variable(y) with variable(x) we replace with a term that contains
the bound variable x).

Exercise 2 (Herbrand model): (4 points)

Let

ϕ =p(a, b, a)

∧ ∀X,Y, Z p(X,Y, Z)→ p(f(X), g(X,X), X)

∧ ¬∀X p(f(X), g(X,X), X)

be a formula over the signature (Σ,∆) with Σ0 = {a, b},Σ1 = {f},Σ2 = {g} and ∆3 = {p}. Here, we use fi(a)
as an abbreviation for f(. . . (f︸ ︷︷ ︸

i times

(a)) . . .).

a) Prove that ϕ is satis�able.

b) Give a Herbrand model for ϕ or show why no such model exists.

c) Transform ϕ into a corresponding formula ψ in Skolem normal form (that is satis�ability-equivalent to
ϕ).

d) Give a Herbrand model for ψ or show why no such model exists.

e) Are ϕ and ψ equivalent (cf. De�nition 2.2.1)? Explain your answer.

3

Logic Programmierung SS13
Exercise Sheet 2 (due 08.05.2013)

Exercise 3 (Gilmore's algorithm): (5 points)

Consider the following logic program

plus(s(X),Y,s(Z)) :- plus(X,Y,Z).

plus(0,Z,Z).

and the query

? - plus(s(0),s(0),s(s(0))).

Using Gilmore's algorithm show that the formulas ϕ1 and ϕ2 corresponding to the logic program entail the
formula ϕ corresponding to the query (i.e., {ϕ1, ϕ2} |= ϕ).

4

