Exercise 1 (Conjunctive Normal Form): (3 points)
Consider the following formula φ with $p_1, \ldots, p_6 \in \Delta_0$:
$$\varphi = \neg \left(\left(p_1 \lor \left(p_2 \rightarrow p_3 \right) \right) \land \neg \left(p_4 \lor p_5 \right) \right) \lor p_6$$
Use the algorithm presented in the proof of Theorem 3.3.2 to convert φ to an equivalent formula in conjunctive normal form (CNF).

Exercise 2 (Multi-Resolution): (1.5+1.5=3 points)
In this exercise we consider an extension of resolution in propositional logic, which we call multi-resolution. Let K_1 and K_2 be clauses without variables. Then a clause R is a multi-resolvent of K_1 and K_2 iff for some $n > 0$ there are literals L_1, \ldots, L_n such that $K_1 = K_1' \uplus \{ L_1, \ldots, L_n \}$, $K_2 = K_2' \uplus \{ \overline{L_1}, \ldots, \overline{L_n} \}$, and $R = K_1' \cup K_2'$. Here, \uplus denotes disjoint union. Thus, $K \uplus K'$ stands for the set $K \cup K'$ and it states that $K \cap K' = \emptyset$. The following diagram illustrates a multi-resolution step:

Please prove or disprove the following statements:

a) Multi-resolution is sound, i.e., there is no satisfiable clause set \mathcal{K} without variables from which one can derive \square by multi-resolution.

b) Multi-resolution is complete, i.e., from any unsatisfiable clause set \mathcal{K} without variables one can derive \square by multi-resolution.

Exercise 3 (Resolution for propositional logic): (3 points)
Consider the following clause set \mathcal{K} with $p_1, \ldots, p_4 \in \Delta_0$:
$$\mathcal{K} = \{ \{p_1, \neg p_2\}, \{\neg p_4\}, \{p_2, p_3\}, \{\neg p_1, p_4\} \}$$
Please show that \mathcal{K} is unsatisfiable by using resolution for propositional logic (cf. Definition 3.3.4 and Example 3.3.5).

Hint: It suffices to perform five resolution steps.
Exercise 4 (Unification): (1.5 + 1.5 + 1.5 + 1.5 = 6 points)

Consider the signature \((\Sigma, \Delta)\) with \(\Sigma_0 = \{a, b\}, \Sigma_1 = \{h\}, \Sigma_2 = \{f, g\}\), and \(\Delta_3 = \{p\}\). Use the algorithm from the lecture to decide whether the following clauses are unifiable. To document your application of the algorithm on some clause \(K\), please write down the current substituted clause \(\sigma(K)\) whenever the algorithm checks whether \(|\sigma(K)| = 1\) and underline the position of the next symbols where the literals are not equal. Additionally, write down the resulting most general unifier (mgu) or the kind of failure (clash or occur) the algorithm returns. To illustrate this exercise, we give a short example for the clause \(\{p(X, Y, Z), p(Z, a, b)\}\):

1. \(\{p(X, Y, Z), p(Z, a, b)\}\)
2. \(\{p(Z, Y, Z), p(Z, a, b)\}\)
3. \(\{p(Z, a, Z), p(Z, a, b)\}\)
4. \(\{p(b, a, b)\}\)
5. mgu: \(\{X/b, Y/a, Z/b\}\)
 a) \(\{p(X, h(Z), f(X, X)), p(f(Y, Y), Y, f(Z, Z))\}\)
 b) \(\{p(h(X), X, f(X, Y)), p(Y, h(Z), f(X, h(h(Z))))\}\)
 c) \(\{p(X, f(h(Z), X), a), p(h(Y), f(X, h(a)), Z)\}\)
 d) \(\{p(f(g(a, b), Z), X, a), p(f(X, a), g(Y, Y), Z)\}\)