

Prof. Dr. Jürgen Giesl

TK Master

Bachelor/Master Exam Version V3B

Cornelius Aschermann, Jera Hensel

Duchelol, Mastel Exam Version Vob		
First Name:		
Last Name:		
Immatriculation Number:		
Course of Studies (please	mark exactly one):	
∘ Informatik Bachelo	r ○ Mathematik Master	

	Maximal Points	Achieved Points
Exercise 1	13	
Exercise 2	10	
Exercise 3	11	
Exercise 4	14	
Exercise 5	5	
Exercise 6	7	
Total	60	
Grade	-	

Other: ______

Instructions:

- On every sheet please give your first name, last name, and immatriculation number.
- You must solve the exam without consulting any extra documents (e.g., course notes).
- Make sure your answers are readable. Do not use **red or green pens or pencils**.
- Please answer the exercises on the **exercise sheets**. If needed, also use the back sides of the exercise sheets.
- Answers on extra sheets can only be accepted if they are clearly marked with your name, your immatriculation number, and the **exercise number**.
- Cross out text that should not be considered in the evaluation.
- Students that try to cheat **do not pass** the exam.
- At the end of the exam, please return all sheets together with the exercise sheets.

Immatriculation Number:

Exercise 1 (Theoretical Foundations):

(4 + 4 + 5 = 13 points)

Let $\varphi = p(0,0) \land \forall X, Y (p(X,Y) \rightarrow p(Y,s(X)))$ and $\psi = \exists Z p(Z,s(Z))$ be formulas over the signature (Σ, Δ) with $\Sigma = \Sigma_0 \cup \Sigma_1, \Sigma_0 = \{0\}, \Sigma_1 = \{s\}$, and $\Delta = \Delta_2 = \{p\}$.

- a) Prove that $\{\varphi\} \models \psi$ by means of SLD resolution. Hint: First transform the formula $\varphi \land \neg \psi$ into an equivalent clause set.
- **b)** Explicitly give a Herbrand model of the formula φ (i.e., specify a carrier and a meaning for all function and predicate symbols). You do not have to provide a proof for your answer.
- **c)** Prove or disprove: If \mathcal{K} is a set of clauses without variables, S is a model of \mathcal{K} , \mathcal{K}_1 , $\mathcal{K}_2 \in \mathcal{K}$ and R is a resolvent of \mathcal{K}_1 and \mathcal{K}_2 , then S is a model of $\mathcal{K} \cup \{R\}$.

formatik || Name:

Immatriculation Number:

Exercise 2 (Procedural Semantics, SLD tree):

(5 + 5 = 10 points)

Consider the following Prolog program \mathcal{P} which can be used to check whether a list contains 4 or 6, but it does not contain any 2 before the first 4 or 6.

```
e(2).
e(4).
e(4).
e(6).
p([X|_]):- e(X),!,not(X = 2).
p([_|XS]):- p(XS).
not(X):- X,!,fail.
not(_).
```

As an example, the query p([1,2,4,8]) would not be provable (since it contains a 2 and there is no 4 or 6 before).

a) The program \mathcal{P}' results from \mathcal{P} by **removing both cuts**. Consider the following query:

```
?-p([1,2,4,8]).
```

For the logic program \mathcal{P}' (i.e., **without the cuts**), please show a successful computation for the query above (i.e., a computation of the form $(G, \varnothing) \vdash_{\mathcal{P}'}^+ (\Box, \sigma)$ where $G = \{\neg p[1,2,4,8]\}$). You may leave out the negations in the queries.

Name:

Immatriculation Number:

b) Please give a graphical representation of the SLD tree for the query

in the program \mathcal{P} (i.e., **with the cuts**). For every part of a tree that is cut off by evaluating !, please indicate the cut by marking the corresponding edge. For the cut-off parts only indicate the first cut-off goal, but do not evaluate further.

Immatriculation Number:

Exercise 3 (Fixpoint Semantics):

$$(5 + 3 + 3 = 11 points)$$

Consider the following logic program $\mathcal P$ over the signature (Σ, Δ) with $\Sigma = \{0, s\}$ and $\Delta = \{p\}$. p(0, X).

$$p(s(X), s(s(Y))) :- p(X, Y).$$

- a) For each $n \in \mathbb{N}$ explicitly give $\underline{\operatorname{trans}}_{\mathcal{P}}^{n}(\varnothing)$ in closed form, i.e., using a non-recursive definition.
- **b)** Compute the set $lfp(\underline{trans}_{\mathcal{P}})$.
- c) Give $F[\mathcal{P}, \{\neg p(s(s(0)), X)\}]$.

Exercise 4 (Definite Logic Programming):

(7 + 7 = 14 points)

a) We consider Deterministic Finite Automata (DFAs). An example for such an automaton is given below. It accepts all words where the number of "a" characters in the word is even.

Name:

We encode this automaton into Prolog facts as follows:

```
start(s0).
final(s0).
delta(s0,a,s1).
delta(s1,a,s0).
delta(s1,b,s1).
delta(s0,b,s0).
```

As a quick reminder: A DFA is a five-tuple $(Q, \Sigma, \delta, q_0, F)$. Here, Q is a set of states (in our case $\{s_0, s_1\}$), Σ is the set of alphabet symbols (in our case $\{a, b\}$). The transition function δ : $Q \times \Sigma \mapsto Q$ maps the current state to the next state given that a certain symbol from Σ was read. The automaton starts in the start state q_0 and accepts the word if it stops in a final state from the set $F \subseteq Q$ (in our case $F = \{s_0\}$).

We say that an automaton $(Q, \Sigma, \delta, q_0, F)$ accepts a word $w = (a_1, a_2, \ldots, a_n) \in \Sigma^n$ if there is a run $q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \xrightarrow{a_3} \cdots \xrightarrow{a_n} q_n$ such that for all $i \in \{1, \ldots, n\}$ it holds that $\delta(q_{i-1}, a_i) = q_i$ and $q_n \in F$.

In the example above, we encoded the start state q_0 with the fact start(s0), the set of final states F is encoded by the fact final(s0), the transition function is encoded by the delta/3 predicate such that delta(q_i , a, q_j) holds iff $\delta(q_i, a) = q_j$. The sets Q and Σ are implicitly defined by the arguments of delta.

Implement a predicate accepts/1. The query: ?- accepts(Word) should succeed iff the DFA accepts the given word. In our example, the query ?- accepts([a,b,a]) should succeed but the query ?- accepts([a,b]) should fail. Your clause for accepts should work for any DFA (i.e., for any clauses defining start, final, and delta).

Name:

Immatriculation Number:

- **b)** Consider the set partition problem: Given a set $S = \{a_1, \ldots, a_n\}$ of integer numbers, find a partition of S into two sets L and R such that
 - $\sum_{a_i \in L} a_i = \sum_{a_i \in R} a_i$
 - $L \cup R = S$
 - $L \cap R = \emptyset$.

Implement a predicate partition/3 such that ?- partition(S,L,R) succeeds iff L and R are a valid partition of S. For example, partition([1,2,3],L,R) should succeed with answer substitution L = [1,2], R = [3]. On lists with duplicate entries your implementation may behave arbitrarily.

Exercise 5 (Meta-Programming):

Name:

(5 points)

Consider the well known function fib(i) that returns the i-th Fibonacci number. A possible Prolog implementation for fib is:

```
fib(0,0):- !.
fib(1,1):- !.
fib(X,Y):-
    XPP is X-2, fib(XPP,YPP),
    XP is X-1, fib(XP, YP),
    Y is YP + YPP,!.
```

However, this implementation has roughly exponential runtime. There are many ways to improve this. In this exercise we will use memoization to improve the performance drastically. Implement a predicate mem(X) that will try to prove X. If the proof of X succeeds, then the proof of mem(X) is also successful. Moreover, if the resulting answer substitution σ maps X to a ground term, then $\sigma(X)$ is added to the database of program clauses.

Given this predicate, the following definition of fib should only require a linear number of evaluations of fib.

Hints:

• You may use the built-in predicates assertz/1, asserta/1, ground/1 and the cut operator.

Immatriculation Number:

Exercise 6 (Difference Lists):

(7 points)

Consider the following logic program \mathcal{P} .

```
append_diff(A-B,B-C,A-C).
```

Explicitly give the set of all answer substitutions for the query ?- r(ZS) (up to variable renaming).