3. Resolution

Goal: Check $\Phi \models \Psi$ automatically.

The definition of entailment is not suitable for automation, because one would have to check all (infinitely many) interpretations I and find out whether $I \models \Phi$ implies $I \models \Psi$.

Instead: develop a calculus that allows to prove $\Phi \models \Psi$ in a syntactical (automatable) way.

Calculus is sound if: if the calculus can deduce Ψ from Φ, then $\Phi \models \Psi$ really holds.

Calculus is complete if: whenever $\Phi \models \Psi$, then the calculus can deduce Ψ from Φ.

Logic programming uses the resolution calculus, which is indeed sound and complete.

Idea: instead of entailment ($\Phi \models \Psi$),
we examine an unsatisfiability problem

Lemma 3.0.1 (From Entailment to Unsatisfiability)

Let \(\psi_1, \ldots, \psi_k, \psi \in \mathcal{F}(\Sigma, \Delta, \mathcal{U}) \).

Then we have \(\{ \psi_1, \ldots, \psi_k \} \models \psi \) iff

the formula \(\psi_1 \wedge \ldots \wedge \psi_k \wedge \neg \psi \) is unsatisfiable.

Proof:

\(\{ \psi_1, \ldots, \psi_k \} \models \psi \)

iff for all interpretations \(I \) with \(I \models \{ \psi_1, \ldots, \psi_k \} \),

we have \(I \models \psi \)

iff there is no interpretation \(I \) with \(I \models \{ \psi_1, \ldots, \psi_k \} \) and \(I \not\models \neg \psi \)

iff \(\psi_1 \wedge \ldots \wedge \psi_k \wedge \neg \psi \) is unsatisfiable. \(\blacksquare \)

Ex. 3.0.2

To show that in the logic prog. with the fact

motherOf (ren, sus)

the query \(\neg \text{motherOf}(X, \text{sus}) \) holds, one has to show:

\(\{ \text{motherOf}(\text{ren}, \text{sus}) \} \models \exists X \text{ motherOf}(X, \text{sus}) \)

Instead, one can show unsatisfiability of
\[\{ \text{motherOf}(\text{ren}, \text{sus}), \exists X \text{ motherOf}(X, \text{sus}) \} \]

In general: Unsatisfiability of logic formulas is undecidable. (This: Entailment is also undecidable.)

This means: There is no terminating algorithm that can determine whether \(\overline{\Phi} \models \Psi \) holds or not.

But: Unsatisfiability (and entailment) is semi-decidable.

This means: There is an algorithm which terminates whenever \(\overline{\Phi} \models \Psi \) holds (and which determines that \(\overline{\Phi} \models \Psi \) holds). But if \(\overline{\Phi} \not\models \Psi \), then the algorithm might not terminate.

The resolution calculus is such a semi-decision algorithm for unsatisfiability.

Ex: empty prog.

query: \(\exists X \) motherOf \((X, sus) \)

To check: \(\models \exists X \) motherOf \((X, sus) \)

Equivalently: \(\{ \exists X \) motherOf \((X, sus) \} \) unsatisfiably?
Goal: Introduce technique to check unsatisfiability of formulas automatically.

3.1. Skolem Normal Form

Aim: Simplify any formula to the following form:

\[\forall X_1, \ldots, X_n \eta \]

where \(\eta \) is quantifier-free and \(\text{Var}(\eta) \subseteq \{X_1, \ldots, X_n\} \)

First step: Transform any formula to prenex normal form.

Def 3.1.1 (Prenex Normal Form)

A formula \(\eta \) is in prenex normal form iff it has the form

\[Q_1 X_1 Q_2 X_2 \ldots Q_n X_n \eta \]

with \(Q_n, \ldots, Q_1 \in \{\forall, \exists\} \) and \(\eta \) is quantifier-free.

Thm 3.1.2 (Transformation into prenex normal form)

For every formula \(\eta \) one can automatically construct an equivalent formula \(\eta' \) in prenex normal form.

Proof:

- Replace all sub-formulas \(\eta_1 \rightarrow \eta_2 \) by
\((\phi_1 \rightarrow \phi_2) \land (\phi_2 \rightarrow \phi_1) \)

* Replace all sub-formulas \(\phi_1 \rightarrow \phi_2 \) by \(\neg \neg \phi_1 \lor \phi_2 \).

Then we apply the following algorithm \textsc{Prenex}:

* If \(\phi \) is quantifier-free, then return \(\phi \).

* If \(\phi = \neg \phi_1 \), then compute \(\textsc{Prenex}(\neg \phi_1) = \neg \neg \phi_1 \land \exists x_1 \ldots \exists x_n \phi \).

Then return \(\neg \neg \phi_1 \land \exists x_1 \ldots \exists x_n \phi \),

where \(\neg = \exists \), \(\exists = \forall \).

* If \(\phi = \phi_1 \cdot \phi_2 \) where \(\cdot \in \{ \land, \lor \} \), then compute

\begin{align*}
\textsc{Prenex}(\phi_1) & = \neg \neg \phi_1 \land \exists x_1 \ldots \exists x_n \phi_1 \\
\textsc{Prenex}(\phi_2) & = \forall y_1 \ldots \forall y_m \phi_2
\end{align*}

By renaming bound variables, ensure that \(x_1, \ldots, x_n \) do not occur in \(\forall y_1 \ldots \forall y_m \phi_2 \)
and that \(y_1, \ldots, y_m \) do not occur in \(\neg \neg \phi_1 \land \exists x_1 \ldots \exists x_n \phi_1 \).

Then return:

\begin{align*}
\neg \neg \phi_1 \land \exists x_1 \ldots \exists x_n \phi_1 \land \forall y_1 \ldots \forall y_m \phi_2
\end{align*}

* If \(\phi = QX \phi_1 \) with \(Q \in \{ \forall, \exists \} \).

Then compute \(\textsc{Prenex}(\phi_1) = \forall x_1 \ldots \forall x_n \phi_1 \).

By renaming bound variables, ensure that
Ex. 3.1.3 Transform the following formula into prenex normal form:

\[
\neg \exists X (\text{married}(X, Y) \lor \neg \exists Y \text{mother of}(X, Y))
\]

\[
\forall Y \neg \text{mother of}(X, Y)
\]

\[
\forall Z \neg \text{mother of}(X, Z)
\]

\[
\neg \exists X \forall Z (\text{married}(X, Y) \lor \neg \text{mother of}(X, Z))
\]

\[
\forall X \exists Z \neg (\text{married}(X, Y) \lor \neg \text{mother of}(X, Z))
\]

Ex 3.14

Log. Req. with the fact \(\neg \text{mother of}(\text{ren, sus}) \).

Query \(\neg \text{mother of}(X, \text{sus}) \).

We have to show unsatisfiability of \(\neg \text{mother of}(\text{ren, sus}) \lor \exists X \text{mother of}(X, \text{sus}) \).

This can be transformed to prenex normal form:

\[
\neg \text{mother of}(\text{ren, sus}) \lor \forall X \neg \text{mother of}(X, \text{sus})
\]

\[
\forall X (\neg \text{mother of}(\text{ren, sus}) \lor \neg \text{mother of}(X, \text{sus}))
\]
Def 3.4.5 (Skolem Normal Form)
A formula \(\phi \) is in Skolem normal form iff it is closed and it has the form \(\forall X_1, \ldots, X_n \phi \), where \(\phi \) is quantifier-free.

For every formula, there is an equivalent formula in prenex normal form.
This is not true for Skolem normal forms.
For example, \(\exists X \text{ female}(X) \) or \(\exists X \text{ female}(X) \)
have no equivalent formula in Skolem normal form.
We only need that the original formula is satisfiable iff the corresponding formula in Skolem normal form is satisfiable.

In the example:
\[
\exists X \text{ female}(X) \quad \text{and} \quad \text{female}(a)
\]
are satisfiability-equivalent.

\[
\forall Y \exists X \text{ married}(X,Y) \quad \text{and} \quad \forall Y \text{ married}(f(Y),Y)
\]
are fresh function symbols of arity 0.
Thm 3.1.6 (Transformation into Skolem Normal Form)

For every formula φ, one can automatically construct a formula φ' in Skolem normal form such that φ is satisfiable iff φ' is satisfiable.

Proof: First, φ is transformed to prenex normal form as in Thm 3.1.2. This results in a formula φ_1.

Let X_1, \ldots, X_n be the free variables of φ_1.

Then transform φ_1 to $\varphi_2 = \exists X_1, \ldots, X_n \varphi_1$. Clearly φ_2 and φ_1 are satisfiability-equivalent:

1. $I \models \varphi_1$ for $I = (A, \alpha, \beta)$
2. $I \models \exists X_1/\beta(X_1), \ldots, X_n/\beta(X_n) \varphi_1$ \models \varphi_1
3. $I \models \exists X_1, \ldots, X_n \varphi_1$.

$I \models \varphi_2$ with $I = (A, \alpha, \beta)$

4. $I \models \exists X_1, \ldots, X_n \varphi_1$

5. There exist $a_1, \ldots, a_n \in A$ with $I \models X_1/a_1, \ldots, X_n/a_n \varphi_1 = \varphi_1$
6. φ_1 is satisfiable.

Now φ_2 is a closed formula in prenex normal form.
We eliminate the existential quantifiers from the outside to the inside.

If \(\phi_2 \) is \(\forall X_n, \ldots, X_1 \exists Y \psi \),

then replace it by \(\forall X_1, \ldots, X_n \forall Y \exists Y / f(X_1, \ldots, X_n) \)

where \(f \) is a fresh function symbol of arity \(n \).

One can prove that this does not change satisfiability of the formula (by substitution lemma 2.2.3).

\[
\text{Ex} \begin{array}{ll}
3.17 & \rightarrow \exists X (\text{married}(X,Y) \lor \exists Y \text{mother}_f(X,Y)) \\
\downarrow \text{prefix normal form (Ex. 3.1.3)}
\end{array}
\]

\[
\forall X \exists T \rightarrow (\text{married}(X,Y) \lor \neg \text{mother}_f(X,Y))
\]

\[
\downarrow \text{get rid of free var. } Y
\]

\[
\exists Y \forall X \exists T \rightarrow (\text{married}(X,Y) \lor \neg \text{mother}_f(X,Y))
\]

\[
\downarrow \text{replace } Y \text{ by fresh } a \in \Sigma.
\]

\[
\forall X \exists T \rightarrow (\text{married}(X,a) \lor \neg \text{mother}_f(X,a))
\]
\[\forall X \neg (\text{married}(X, a) \lor \neg \text{mother of}(X, f(X))) \]