3.3 Ground Resolution

Drawbacks of Gilmore’s Algorithm:
- How can one find a suitable instantiation of variables by ground terms? \[\text{Sect 3.4} \]
- How can one check satisfiability of a propositional formula efficiently? \[\text{Sect 3.3} \]

Resolution: main proof technique in logic prog.
First: ground resolution (for formulas without variables)

To check a formula $\forall X_1, \ldots, X_n\, \forall$ in Skolem NF for unsatisfiability by resolution, one first has to transform \forall into conjunctive normal form (CNF).
Such formulas can then be represented as clause sets.

Def 3.3.1 (CNF, Clause, Literal)

A formula \forall is in conjunctive normal form iff it is quantifier-free and has the form

$$(L_{1,\overline{1}} \lor \ldots \lor L_{1,n}) \land \ldots \land (L_{m,\overline{1}} \lor \ldots \lor L_{m,n}).$$

Here, $L_{i,\overline{1}}$ are literals, i.e., atomic formulas or negated atomic formulas of the form $p(t_1, \ldots, t_k)$ or $\neg p(t_1, \ldots, t_k)$.

For every literal L, its negation \overline{L} is defined as

$$\overline{L} = \begin{cases} \neg A, & \text{if } L = A \in \text{At}(\exists, \Delta, \forall) \\ A, & \text{if } L = \neg A, A \in \text{At}(\exists, \Delta, \forall) \end{cases}$$

A clause is a set of literals and it represents the
universally quantified disjunction of the literals. A clause set represents the conjunction of its clauses. So every formula $\forall_i \psi_i$ in CNF can be represented as a clause set

$$\forall_i \psi_i = \bigwedge \{ \{ \psi_{i,1}, \ldots, \psi_{i,m_i} \} \mid \psi_{i,1}, \ldots, \psi_{i,m_i} \in \psi_i \}$$

Therefore, we also speak of satisfiability and entailment of clause sets. The empty clause is denoted \Box. It is unsatisfiable by definition (empty disjunction).

Theorem 3.3.2 (Transformation to CNF)

Every quantifier-free formula $\forall_i \psi_i$ can be transformed into an equivalent formula $\forall_i \psi_i'$ in CNF automatically.

Proof: First replace all sub-formulas $\forall_i \psi_i \leftrightarrow \forall_i \psi_i'$ by

$$(\forall_i \psi_i \rightarrow \forall_i \psi_i') \land (\forall_i \psi_i' \rightarrow \forall_i \psi_i)$$

Then replace all sub-formulas $\forall_i \psi_i \rightarrow \forall_i \psi_i'$ by $\forall_i \psi_i \lor \forall_i \psi_i'$.

Afterwards, use the following algorithm CNF:

- **Input:** $\forall_i \psi_i$ (quantifier-free, without \leftrightarrow, \lor, \land)
- **Output:** Equivalent formula in CNF

 - If $\forall_i \psi_i$ is an atomic formula, then return $\forall_i \psi_i$.
 - If $\forall_i \psi_i = \forall_i \psi_i \land \forall_i \psi_i'$, then return $\text{CNF}(\forall_i \psi_i) \land \text{CNF}(\forall_i \psi_i')$.
 - If $\forall_i \psi_i = \forall_i \psi_i \lor \forall_i \psi_i'$, then compute

 $$\text{CNF}(\forall_i \psi_i) = \forall_i \psi_i' \lor \cdots \lor \forall_i \psi_{i,m_i}'$$

 $$\text{CNF}(\forall_i \psi_i') = \forall_i \psi_i'' \lor \cdots \lor \forall_i \psi_{i,m_i}''$$

 Return $\bigwedge_{i \in \{1, \ldots, m_i\}} \bigwedge_{j \in \{1, \ldots, m_j\}} (\forall_i \psi_i' \lor \forall_i \psi_i'' \lor \cdots \lor \forall_i \psi_{i,m_i}'' \lor \forall_i \psi_{i,m_j}''')$

 - Use the distributivity law
- If $\Phi = \neg \Phi_0$, then compute

$$\text{CNF}(\Phi) = \bigwedge_{i \in \{1, \ldots, n \}} \left(\bigvee_{j \in \{1, \ldots, m \}} \neg \Phi_{i,j} \right)$$

De Morgan's law states that the negation of this formula is

$$\bigvee_{i \in \{1, \ldots, n \}} \left(\bigwedge_{j \in \{1, \ldots, m \}} \Phi_{i,j} \right)$$

Due to the distributivity law, we return

$$\bigwedge_{j \in \{1, \ldots, m \}} \left(\bigvee_{i \in \{1, \ldots, n \}} \bigvee_{k \in \{1, \ldots, n \}} \Phi_{i,j,k} \right)$$

Ex 3.3 Let $p, q, r \in \Delta_0$.

Transform the following formula into CNF:

$$\neg (\neg p \land (\neg q \lor r))$$

↓ De Morgan

$$p \lor (q \land \neg r)$$

↓ Distributivity

$$(p \lor q) \land (p \lor \neg r)$$

Alg. of Gilmore: To check unsatisf. of Ψ, consider $E(\Psi)$ and prove unsatisf. of these propositional formulas.

Therefore: Now introduce a technique to prove unsatisfiability of prop. formulas in CNF.

In other words: Prove unsatisf. of clause sets
Without variables.

Resolution: \((L_1 \lor L) \land (L_2 \lor \neg L)\)

implies \(L_1 \lor L_2\)

Def 33.4 (Propositional Resolution)

Let \(K_1, K_2\) be two clauses without variables. Then, the clause \(R\) is a resolvent of \(K_1\) and \(K_2\) iff there exists a \(L \in K_1\) with \(\neg L \in K_2\) and \(R = (K_1 \setminus \{L\}) \lor (K_2 \setminus \{\neg L\})\).

For a clause set \(Y\), we define

\[\text{Res}(\neg Y) = Y \lor \{ R \mid R \text{ is resolvent of two clauses from } Y \} \]

We define

\[\text{Res}^0(\neg Y) = Y \]

\[\text{Res}^{n+1}(\neg Y) = \text{Res}(\text{Res}^n(\neg Y)) \quad \text{for all } n \geq 0 \]

Moreover:

\[\text{Res}^d(\neg Y) = \bigcup_{n \geq 0} \text{Res}^n(\neg Y) \]

Idea: Construct \(\text{Res}^d(\neg Y)\) until one obtains \(\square\). Since adding resolvents is equivalence-preserving, this means that \(Y\) is unsatisfiable.

Clearly: \(\square \in \text{Res}^d(\neg Y)\) iff there is a sequence of clauses \(K_1, \ldots, K_m\) with \(K_m = \square\) where for all \(1 \leq i \leq m\), we have

\[\bullet K_i \in Y \quad \text{or} \quad \bullet \neg K_i \in Y \]
\(K_\alpha \) is a resolvent of \(K_\delta, K_\kappa \) for \(\delta, \kappa < \alpha \).

To denote resolution proofs:

\[
\begin{array}{c}
\text{\(K_1 \)} \\
\text{\(K_2 \)}
\end{array}
\xrightarrow{R}
\begin{array}{c}
\text{\(R \)}
\end{array}
\]

This means that \(R \) is resolvent of \(K_1 \) and \(K_2 \).

Ex. 3.35 Let \(\Delta = \{ p, q \} \), \(\Sigma_0 = \{ a, b \} \), \(\Sigma_1 = \{ f \} \), \(\Sigma_2 = \{ g \} \).

We regard the clause set \(\mathcal{Y} = \{ K_1, K_2, K_3, K_4 \} \) with

\[
\begin{align*}
K_1 & : \{ \neg p(f(a)), q(b) \} \\
K_2 & : \{ p(f(a)) \} \\
K_3 & : \{ p(g(b,a)) \} \\
K_4 & : \{ \neg p(g(b,a)), q(b) \}
\end{align*}
\]

The resolution calculus is sound and complete:

Completeness: If \(\mathcal{Y} \) is unsat., then \(\Box \in \text{Res}^*(\mathcal{Y}) \).

Soundness: If \(\Box \in \text{Res}^*(\mathcal{Y}) \), then \(\mathcal{Y} \) is unsat.

To prove soundness, we need the following lemma.

Lemma 3.36 (Propositional Resolution Lemma)

Let \(\mathcal{Y} \) be a set of clauses without variables.

If \(\mathcal{Y}_1, \mathcal{Y}_2 \in \mathcal{Y} \) and \(R \) is a resolvent of \(\mathcal{Y}_1 \) and \(\mathcal{Y}_2 \),

then \(\mathcal{Y}_1 \) and \(\mathcal{Y}_2 \cup \{ R \} \) are equivalent.

Proof: \(\supseteq \): Every structure that satisfies \(\mathcal{Y}_1 \cup \{ R \} \) also satisfies \(\mathcal{Y}_1 \).

Thus: \(\mathcal{Y}_1 \cup \{ R \} \models \mathcal{Y}_1 \).
"⇒": Let S be a structure with $S \models \mathcal{K}$.

Let $L \in \mathcal{K}_1$, $\bar{L} \in \mathcal{K}_2$, $R = (\mathcal{K}_1 \setminus \{L\}) \cup (\mathcal{K}_2 \setminus \{\bar{L}\})$.

Assume $S \not\models \mathcal{K} \cup \{R\}$. Thus: $S \not\models R$

If $S \not\models L$, then $S \models \bar{L}_2$ implies $S \models \bar{L}_2 \setminus \{\bar{L}\}$

Therefore: $S \models R$

If $S \not\models \bar{L}$, then $S \models L$ and $S \models \mathcal{K}_2$ implies $S \models \mathcal{K}_2 \setminus \{L\}$

Therefore: $S \models R$.

Thus \Rightarrow (Soundness andCompleteness of Prop. Resolution)

Let \mathcal{K} be a set of clauses without variables.

Then \mathcal{K} is unsatisfiable iff $\exists \in \text{Res}^n(\mathcal{K})$.

Proof: Soundness "⇒":

By the resolution lemma 3.3.6, \mathcal{K} and $\text{Res}(\mathcal{K})$ are equivalent. By induction on n, one can show that \mathcal{K} and $\text{Res}^n(\mathcal{K})$ are equivalent for all $n \in \mathbb{N}$.

$\exists \in \text{Res}^n(\mathcal{K})$

there exists an $n \in \mathbb{N}$ with $\exists \in \text{Res}^n(\mathcal{K})$

$\Rightarrow \text{Res}^n(\mathcal{K})$ is unsat.

$\Rightarrow \mathcal{K}$ is unsat.

Completeness "⇒":

If \mathcal{K} is unsatisfiable, then there is a finite subset $\mathcal{K}' \subseteq \mathcal{K}$ which is also unsat. (by the compactness theorem of prop. logic).

Let n be the number of different atomic formulas in \mathcal{K}'. We use induction on n.
Ind. Base: $n = 0$
There are only two clause sets without atomic formulas:
\[X^1 = \emptyset \]
- empty conjunction: valid, i.e., true in every interpretation
\[X^2 = \{ \bot \} \]. Then \(\bot \in \text{Res}^* (X^2) \subseteq \text{Res}^* (X^1) \).

Ind. Step: $n > 0$
Let A be an atomic formula that occurs in the unsat. clause set X^1.
Let X^+ result from X^1 by
- removing all clauses that contain literal A
- drop $\neg A$ from all remaining clauses
Thus: $X^+ = \{ K \setminus \{ \neg A \} \mid K \in X^1, A \in K \}$
Similarly: $X^- = \{ K \setminus \{ A \} \mid K \in X^1, \neg A \in K \}$
X^+ is unsat.: If $S \models X^+$ then extend S to a structure S' with $S' \models A$.
Then $S' \models X^1 \quad \bot$ to the unsat. of X^1
Similarly, X^- is unsat.
Since X^+ and X^- do not contain A, we can apply the ind. hypothesis, which yields:
\[\bot \in \text{Res}^* (X^+) \quad \text{and} \quad \bot \in \text{Res}^* (X^-) \quad \bot \in \text{Res}^* (X^+) \]
means that there is a sequence \(\ell_1, \ldots, \ell_m \) with \(\bot = \ell_m \) where
for all \(1 \leq i \leq m \):
\[\bullet \ell_i \in X^+ \quad \text{or} \quad \ell_i \text{ is resolvent of } \ell_j \text{ and } \ell_k \text{ for } j, k < i \]
If all these \(\mathcal{K}_i \) are also contained in \(\mathcal{K}'_i \), then we have proved \(\Box \in \text{Res}^* (\mathcal{K}'_i) \subseteq \text{Res}^* (\mathcal{K}) \).

Otherwise, add \(\neg A \) again to all clauses where it had been removed.

Then, obtain a resolution proof for \(\{ \neg A \} \in \text{Res}^* (\mathcal{K}') \)

Reason: \(C_j \backslash / C_k \quad C_j \cup \neg A \quad C_k \cup \neg A \)

\(C_i \quad C_i \cup \neg A \)

Similarly: \(\Box \in \text{Res}^* (\mathcal{K}') \) implies \(\Box \in \text{Res}^* (\mathcal{K}') \) or \(\{ A \} \in \text{Res}^* (\mathcal{K}') \).

Thus: \(\{ A \} \cup \{ \neg A \} \in \text{Res}^* (\mathcal{K}') \)

implies \(\Box \in \text{Res}^* (\mathcal{K}') \)

\(\ldots \)

\(\{ \neg A \} \quad \{ A \} \)

\(\Box \)

Now the algo. of Gilmore can be improved to the ground resolution algorithm.
Sound: if alg. returns "true," then \(\{y_1, \ldots, y_k\} \models \gamma \)

complete: if \(\{y_1, \ldots, y_k\} \models \gamma \), then alg. terminates and returns "true"

if \(\{y_1, \ldots, y_k\} \not\models \gamma \), then the alg. might not terminate

\Rightarrow \text{ semi-decision procedure}

\text{Step 5: Advantage over Gilmore's alg.}

\Rightarrow \text{ better check for unsat. of propositional clause sets}

\text{Step 4: Still inefficient, since we don't know how to instantiate variables by ground terms in a "clever" way.}

\textbf{Ex 3.38:} Show unsatisfiability of

\[\forall x, y \ (\neg p(x) \lor \neg p(f(a)) \lor q(y)) \land p(y) \land (\neg p(g(b,x)) \lor \neg q(b)) \]

Corresponding clause set \(J^c(\gamma) \):

\[\{\neg p(x), \neg p(f(a)), q(y)\}, \{p(y), \{\neg p(g(b,x)), \neg q(b)\}\} \]

\[U_1: [x/f(a), y/b] \quad U_2: [y/f(a)] \quad U_3: [y/g(b,a)] \quad U_4: [x/a] \]

\[\{\neg p(f(a)), q(b)\} \quad \{p(f(a))\} \quad \{p(g(b,a))\} \quad \{\neg q(b)\} \]

\[\{ q(b) \} \quad \{ \neg q(b) \} \]

- Instantiations can unify several literals of the same clause.
- We can use several different instantiations of the same
clause.

How can one find such suitable instantiations automatically?