Interpretation $I = (A, \alpha, \beta)$

- \mathcal{A} is the *carrier* with $\mathcal{A} \neq \emptyset$
- \bullet α is the *meaning* of function and predicate symbols
 - $-\alpha_f:\mathcal{A}^n\to\mathcal{A}$ for all $f\in\Sigma_n$
 - $-\alpha_p \in \{\mathit{TRUE}, \mathit{FALSE}\}\$ for all $p \in \Delta_0$
 - $-\alpha_p\subseteq\mathcal{A}^n$ for all $p\in\Delta_n$, $n\geq 1$
- ullet β is the *variable assignment* with $\beta: \mathcal{V} \to \mathcal{A}$

Interpretation of terms $I: \mathcal{T}(\Sigma, \mathcal{V}) \to \mathcal{A}$

$$I(X) = \beta(X)$$
 for $X \in \mathcal{V}$

$$I(f(t_1,\ldots,t_n)) = \alpha_f(I(t_1),\ldots,I(t_n))$$
 for $f \in \Sigma_n$ and $t_1,\ldots,t_n \in \mathcal{T}(\Sigma,\mathcal{V})$