Ground Resolution Algorithm

Goal: Determine whether \(\{ \varphi_1, \ldots, \varphi_k \} \models \varphi \) holds

1. Let \(\xi \) be the formula \(\varphi_1 \land \ldots \land \varphi_k \land \neg \varphi \).

2. Transform \(\xi \) into Skolem normal form \(\forall X_1, \ldots, X_n \psi \).

3. Transform \(\psi \) into CNF resp. into clause set \(\mathcal{K}(\psi) \).

4. Choose an enumeration \(\{ K_1, K_2, \ldots \} \) of all ground instances of the clauses from \(\mathcal{K}(\psi) \).

5. Compute \(Res^*({K_1, K_2}) \), \(Res^*({K_1, K_2, K_3}) \), \ldots \) If one of these sets contains \(\Box \), stop and return “true”.

14
Resolution for Predicate Logic

\{ \{ p(X), \neg q(X) \}, \{ \neg p(f(Y)) \}, \{ q(f(a)) \} \}

• use substitution \{ X/f(Y) \} for resolution of the first two clauses

• \(p(X)[X/f(Y)] = p(f(Y)) \) and \(\neg p(f(Y))[X/f(Y)] = \neg p(f(Y)) \)

• \{ X/f(Y) \} is most general unifier of \{ p(X), p(f(Y)) \}

• resolvent is \{ \neg q(X)[X/f(Y)] \} = \{ \neg q(f(Y)) \}