\{L_1, \ldots, L_n\} \text{ is unifiable} \text{ iff there is a } \sigma \text{ with } \sigma(L_1) = \ldots = \sigma(L_n).

\sigma \text{ is mgu} \text{ iff for every unifier } \sigma' \text{ there is a substitution } \delta \text{ with } \sigma' = \delta \circ \sigma.

Unification Algorithm

1. Let \(\sigma = \emptyset \) be the “identical” substitution.

2. If \(|\sigma(K)| = 1\), then stop and return \(\sigma \).

3. Otherwise, check all \(\sigma(L_i) \) in parallel from left to right, until there are different symbols in two literals.

4. If none of these symbols is a variable, then stop with clash failure.

5. Otherwise, let \(X \) be the variable and \(t \) be the subterm in the other literal. If \(X \) occurs in \(t \), then stop with occur failure.

6. Otherwise, let \(\sigma = \{X/t\} \circ \sigma \) und go back to step 2.
Resolution for Predicate Logic

R is a *resolvent* of *K*₁ and *K*₂ iff

- *ν*₁(*K*₁) and *ν*₂(*K*₂) are variable-disjoint

- *L*₁, ..., *L*ₙ ∈ *ν*₁(*K*₁), *L*′₁, ..., *L*′ₙ ∈ *ν*₂(*K*₂) with *n*, *m* ≥ 1 and

{ *L*₁, ..., *L*ₙ, *L*′₁, ..., *L*′ₙ } has mgu *σ*

- *R* = *σ*((*ν*₁(*K*₁) \ { *L*₁, ..., *L*ₙ }) ∪ (*ν*₂(*K*₂) \ { *L*′₁, ..., *L*′ₙ }))

Example

\{ *p*(f(\(X\))), \neg q(Z), *p*(Z)\} \quad \{ \neg *p*(X), *r*(g(\(X\)))\}

\{ \neg q(f(\(X\))), *r*(g(\(f(X)\)))\}

\{ \neg q(f(\(X\))), *r*(g(\(f(X)\)))\}

\nu_1 = \emptyset

\nu_2 = \{ X/U, U/X \}

\sigma = \{ Z/f(X), U/f(X) \}