Linear Resolution

\(\square\) can be obtained from \(K\) in \(\mathcal{K}\) by *linear resolution* iff

there are \(K_1, \ldots, K_m\) with \(K_1 = K\), \(K_m = \square\), and for all \(2 \leq i \leq m\):

\(K_i\) is resolvent of \(K_{i-1}\) and a clause from \(\{K_1, \ldots, K_{i-1}\} \cup \mathcal{K}\).

Input Resolution

\(\square\) can be obtained from \(K\) in \(\mathcal{K}\) by *input resolution* iff

there are \(K_1, \ldots, K_m\) with \(K_1 = K\), \(K_m = \square\), and for all \(2 \leq i \leq m\):

\(K_i\) is resolvent of \(K_{i-1}\) and a clause from \(\mathcal{K}\).