Bachelor/Master Exam Version V3B

First Name: __

Last Name: __

Immatriculation Number: _____________________________

Course of Studies (please mark exactly one):

○ Informatik Bachelor ○ Mathematik Master
○ TK Master ○ Other: _____________________________

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Maximal Points</th>
<th>Achieved Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise 1</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Exercise 2</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Exercise 3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Exercise 4</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Exercise 5</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Exercise 6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Instructions:

• On every sheet please give your first name, last name, and immatriculation number.
• You must solve the exam without consulting any extra documents (e.g., course notes).
• Make sure your answers are readable. Do not use red or green pens or pencils.
• Please answer the exercises on the exercise sheets. If needed, also use the back sides of the exercise sheets.
• Answers on extra sheets can only be accepted if they are clearly marked with your name, your immatriculation number, and the exercise number.
• Cross out text that should not be considered in the evaluation.
• Students that try to cheat do not pass the exam.
• At the end of the exam, please return all sheets together with the exercise sheets.
Exercise 1 (Theoretical Foundations): \((4 + 4 + 3 = 11 \text{ points}) \)

Let \(\varphi = p(0, s(0)) \land \forall X, Y (p(X, Y) \rightarrow p(s(X), s(s(Y)))) \land \neg p(s(0), s(s(0))) \) and \(\psi = \exists Z p(Z, s(s(Z))) \) be formulas over the signature \((\Sigma, \Delta) \) with \(\Sigma = \Sigma_0 \cup \Sigma_1 \), \(\Sigma_0 = \{0\} \), \(\Sigma_1 = \{s\} \), and \(\Delta = \Delta_2 = \{p\} \).

\(a) \) Prove that \(\{\varphi\} \models \psi \) by means of SLD resolution.

Hint: First transform the formula \(\varphi \land \neg \psi \) into an equivalent clause set.

\(b) \) Explicitly give a Herbrand model of the formula \(\varphi \) (i.e., specify a carrier and a meaning for all function and predicate symbols). You do not have to provide a proof for your answer.

\(c) \) Prove correctness of propositional resolution. You may assume that the following is correct: If \(\mathcal{K} \) is a set of clauses without variables, \(S \) is a model of \(\mathcal{K} \), \(K_1, K_2 \in \mathcal{K} \) and \(R \) is a resolvent of \(K_1 \) and \(K_2 \), then \(S \) is a model of \(\mathcal{K} \cup \{R\} \).
Exercise 2 (Procedural Semantics, SLD tree): \(5 + 4 = 9\) points

Consider the following Prolog program \(\mathcal{P}\).

\[
\begin{align*}
a(X,Y) : & - b(s(X)). \\
a(X,Y) : & - b(Y),!,c(X). \\
a(s(X),s(Y)) : & - a(X,Y). \\
c(s(0)). \\
b(0). \\
b(1).
\end{align*}
\]

a) Consider the following query:

\(?- a(A,B). \)

For the logic program \(\mathcal{P}'\) that results by removing the cut from \(\mathcal{P}\), please show a successful computation for the query above (i.e., a computation of the form \((G,\emptyset) \vdash_{\mathcal{P}'} (\Box,\sigma)\) where \(G = \{\neg a(A,B)\}\)). It suffices to give substitutions only for those variables which are used to define the value of the variables \(A\) and \(B\) in the query.
b) Please give a graphical representation of the SLD tree for the query

?- a(A,B).

in the program \(P \) with the cut. For every part of the tree that is cut off by evaluating \(!\), please indicate the cut by marking the corresponding edge. For the cut-off parts only indicate the first cut-off goal, but do not evaluate further.
Exercise 3 (Fixpoint Semantics): (5 + 2 + 3 = 10 points)

Consider the following logic program \(\mathcal{P} \) over the signature \((\Sigma, \Delta)\) with \(\Sigma = \Sigma_0 \cup \Sigma_1 \), \(\Sigma_0 = \{0\} \), \(\Sigma_1 = \{s\} \), and \(\Delta = \Delta_3 = \{p\} \).

\[
p(0, s(X), X).
p(s(X), s(Y), s(s(Z))) :\neg p(X, Y, Z).
\]

a) For each \(n \in \mathbb{N} \) explicitly give \(\text{trans}^n_{\mathcal{P}}(\emptyset) \) in closed form, i.e., using a non-recursive definition.

b) Compute the set \(\text{lfp}(\text{trans}_{\mathcal{P}}) \).

c) Give \(F[\mathcal{P}, \{\neg p(s(s(0)), s(s(X)), Y)\}] \).
Exercise 4 (Definite Logic Programming): (8 + 6 = 14 points)

a) Implement the predicate `incr/2` in Prolog. This predicate can be used to identify the longest increasing prefix \([a_0, \ldots, a_n]\) of a list \([a_0, \ldots, a_n, a_{n+1}, \ldots, a_m]\) such that for all \(i \in \{0, \ldots, n\}\) it holds that \(a_i = a_0 + i\). The first argument of `incr` is the list to analyze. The second argument is the increasing prefix as described above.

As an example, for the list \([1, 2, 3, 2, 1]\) the result \([1, 2, 3]\) is computed (because \(a_3 = 2\) is not equal to \(1 + 3\)). In Prolog, the corresponding call

\[
\text{incr}([s(0), s(s(0)), s(s(s(0))), s(s(s(0))), s(0)], \text{Res})
\]

should return the only answer \(\text{Res} = [s(0), s(s(0)), s(s(s(0)))].\)

Important: You may not use the cut, negation or any other predefined predicates in your implementation! However, you may implement auxiliary predicates.
b) The Collatz sequence n_0, n_1, \ldots for some initial value $n_0 > 0$ is defined as

$$n_{i+1} = \begin{cases}
\frac{n_i}{2}, & \text{if } n_i \text{ is even} \\
n_i \times 3 + 1, & \text{otherwise}
\end{cases}$$

It can easily be seen that if $n_i = 1$ then the sequence will continue: $4, 2, 1, 4, 2, 1, \ldots$. We define the function $\text{collatz_len}(n_0)$ for a start value n_0 as the smallest i such that $n_i = 1$. Note that it is a famous open problem if all start values will eventually reach 1 or if there are other loops or diverging sequences.

Some examples for the length of the Collatz sequence:

- $\text{collatz_len}(1) = 0$, since $n_0 = 1$
- $\text{collatz_len}(2) = 1$, since $n_0 = 2, n_1 = 1$
- $\text{collatz_len}(3) = 7$, due to the Collatz sequence $3, 10, 5, 16, 8, 4, 2, 1$
- $\text{collatz_len}(4) = 2$

Implement the predicate $\text{collatz_len}/2$ in Prolog that calculates the length of the Collatz sequence for a given initial value. It may behave arbitrarily if the length of the sequence starting in n_0 is not defined or $n_0 \leq 0$.

As an example, $\text{collatz_len}(3, Z)$ gives the answer substitution $Z = 7$.

Hints:
- You may only use the built-in predicate $\text{is}/2$, the cut and the usual arithmetic operators such as \mod, $+$, \ast, $-$, $/$.
Exercise 5 (Meta-Programming): (9 points)

Consider the function havoc(t), which takes a ground term t and reverses the order of all arguments in t and any subterm of t. Please implement the predicate havoc/2 that implements this function. For example, the query \(- havoc(a(b, c(d,e)), X)\) yields the answer substitution \(X = a(c(e,d), b)\).

Hints:

- You may use the built-in predicate \(=../2\).
- You may use the built-in predicate \(reverse/2\) which reverses lists.
Exercise 6 (Difference Lists): (7 points)

Consider the following logic program P.

\[
q(X) \leftarrow p(X - [], [1,2,3,4] - []).
\]
\[
\]
\[
p([A|X] - X2, Y - Y2) \leftarrow p(X - X2, Y - [A|Y2]).
\]

Explicitly give the set of all ground terms t for which the query $?- q(t)$. succeeds. You do not have to provide a proof for your answer.