Master Exam Version V3M

First Name:

Last Name:

Immatriculation Number:

Course of Studies (please mark exactly one):

- [] Informatik Bachelor
- [] Informatik Master
- [] SSE Master
- [] Other: ______________

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Maximal Points</th>
<th>Achieved Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise 1</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Exercise 2</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Exercise 3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Exercise 4</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Exercise 5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Exercise 6</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Instructions:

- On every sheet please give your **first name**, **last name**, and **immatriculation number**.
- You must solve the exam **without** consulting any **extra documents** (e.g., course notes).
- Make sure your answers are readable. Do not use **red or green pens or pencils**.
- Please answer the exercises on the **exercise sheets**. If needed, also use the back sides of the exercise sheets.
- Answers on extra sheets can only be accepted if they are clearly marked with your name, your immatriculation number, and the **exercise number**.
- **Cross out** text that should not be considered in the evaluation.
- Students that try to cheat **do not pass** the exam.
- At the end of the exam, please return **all sheets together with the exercise sheets**.
Exercise 1 (Theoretical Foundations): \((4 + 4 + 3 = 11\text{ points})\)

Let \(\varphi = p(0, s(0)) \land \forall X \forall Y (p(X, Y) \rightarrow p(s(X), s(s(Y)))) \land \neg p(s(0), s(s(0))))\) and \(\psi = \exists Z p(Z, s(s(Z)))\) be formulas over the signature \((\Sigma, \Delta)\) with \(\Sigma = \Sigma_0 \cup \Sigma_1\), \(\Sigma_0 = \{0\}\), \(\Sigma_1 = \{s\}\), and \(\Delta = \Delta_2 = \{p\}\).

a) Prove that \(\{\varphi\} \models \psi\) by means of SLD resolution.

 \textit{Hint: First transform the formula }\varphi \land \neg \psi\textit{ into an equivalent clause set.}

b) Explicitly give a Herbrand model of the formula \(\varphi\) (i.e., specify a carrier and a meaning for all function and predicate symbols). You do not have to provide a proof for your answer.

c) Prove correctness of propositional resolution. You may assume that the following is correct: If \(\mathcal{K}\) is a set of clauses without variables, \(S\) is a model of \(\mathcal{K}\), \(K_1, K_2 \in \mathcal{K}\) and \(R\) is a resolvent of \(K_1\) and \(K_2\), then \(S\) is a model of \(\mathcal{K} \cup \{R\}\).
Exercise 2 (Procedural Semantics, SLD tree):

Consider the following Prolog program \mathcal{P}.

\[
\begin{align*}
 a(X,Y) &: -b(s(X)). \\
 a(X,Y) &: -b(Y), !, c(X). \\
 a(s(X),s(Y)) &: -a(X,Y). \\
 c(s(0)). \\
 b(0). \\
 b(1).
\end{align*}
\]

\[a\] Consider the following query:

?- $a(A,B)$.

For the logic program \mathcal{P}' that results by removing the cut from \mathcal{P}, please show a successful computation for the query above (i.e., a computation of the form $(G, \emptyset) \vdash_{\mathcal{P}'} (\Box, \sigma)$ where $G = \{\neg a(A,B)\}$). It suffices to give substitutions only for those variables which are used to define the value of the variables A and B in the query.
b) Please give a graphical representation of the SLD tree for the query

?- a(A,B).

in the program \(\mathcal{P} \) with the cut. For every part of the tree that is cut off by evaluating \(!\), please indicate the cut by marking the corresponding edge. For the cut-off parts only indicate the first cut-off goal, but do not evaluate further.
Exercise 3 (Fixpoint Semantics): (5 + 2 + 3 = 10 points)

Consider the following logic program \mathcal{P} over the signature (Σ, Δ) with $\Sigma = \Sigma_0 \cup \Sigma_1$, $\Sigma_0 = \{0\}$, $\Sigma_1 = \{s\}$, and $\Delta = \Delta_3 = \{p\}$.

$p(0, s(X), X)$.
$p(s(X), s(Y), s(s(Z))) :- p(X, Y, Z)$.

a) For each $n \in \mathbb{N}$ explicitly give $\text{trans}_n^\mathcal{P}(\emptyset)$ in closed form, i.e., using a non-recursive definition.

b) Compute the set $\text{lfp}(\text{trans}_\mathcal{P})$.

c) Give $F[\mathcal{P}, \{\neg p(s(s(0)), s(s(X)), Y)\}]$.

Exercise 4 (Definite Logic Programming): (8 + 6 = 14 points)

a) Implement the predicate `incr/2` in Prolog. This predicate can be used to identify the longest increasing prefix \([a_0, \ldots, a_n]\) of a list \([a_0, \ldots, a_n, a_{n+1}, \ldots, a_m]\) such that for all \(i \in \{0, \ldots, n\}\) it holds that \(a_i = a_0 + i\). The first argument of `incr` is the list to analyze. The second argument is the increasing prefix as described above.

As an example, for the list \([1, 2, 3, 2, 1]\) the result \([1, 2, 3]\) is computed (because \(a_3 = 2\) is not equal to \(1 + 3\)). In Prolog, the corresponding call

```
incr([s(0), s(s(0)), s(s(s(0))), s(s(0)), s(0)], Res)
```

should return the only answer \(Res = [s(0), s(s(0)), s(s(s(0)))].\)

Important: You may not use the cut, negation or any other predefined predicates in your implementation! However, you may implement auxiliary predicates.
b) The Collatz sequence n_0, n_1, \ldots for some initial value $n_0 > 0$ is defined as

$$n_{i+1} = \begin{cases}
n_i/2, & \text{if } n_i \text{ is even} \\
n_i \times 3 + 1, & \text{otherwise}
\end{cases}$$

It can easily be seen that if $n_i = 1$ then the sequence will continue: $4, 2, 1, 4, 2, 1, \ldots$ We define the function $\text{collatz_len}(n_0)$ for a start value n_0 as the smallest i such that $n_i = 1$. Note that it is a famous open problem if all start values will eventually reach 1 or if there are other loops or diverging sequences.

Some examples for the length of the Collatz sequence:

- $\text{collatz_len}(1) = 0$, since $n_0 = 1$
- $\text{collatz_len}(2) = 1$, since $n_0 = 2, n_1 = 1$
- $\text{collatz_len}(3) = 7$, due to the Collatz sequence $3, 10, 5, 16, 8, 4, 2, 1$
- $\text{collatz_len}(4) = 2$

Implement the predicate $\text{collatz_len}/2$ in Prolog that calculates the length of the Collatz sequence for a given initial value. It may behave arbitrarily if the length of the sequence starting in n_0 is not defined or $n_0 \leq 0$.

As an example, $\text{collatz_len}(3, Z)$ gives the answer substitution $Z = 7$.

Hints:

- You may only use the built-in predicate $\text{is}/2$, the cut and the usual arithmetic operators such as $\text{mod}, +, *, -, \text{/}$.
Exercise 5 (Universality): (7 points)

Consider a function \(f : \mathbb{N}^{n+1} \to \mathbb{N} \). The function \(g : \mathbb{N}^n \to \mathbb{N} \) is defined as:

\[
g(k_1, \ldots, k_n) = k \text{ iff } f(k_1, \ldots, k_n, k) = f(k_1, \ldots, k_n, k+1) \text{ and}
\]

for all \(0 \leq k' < k \) we have \(f(k_1, \ldots, k_n, k') \) is defined and

\[
f(k_1, \ldots, k_n, k') \neq f(k_1, \ldots, k_n, k'+1)
\]

As an example, consider the function \(\hat{f} : \mathbb{N}^2 \to \mathbb{N} \) with \(\hat{f}(x, y) = \max\{x - 3y, 1\} \). The function \(\hat{g} : \mathbb{N} \to \mathbb{N} \), constructed as described above, computes \(\hat{g}(6) = 2 \). The reason is that for \(x = 6 \), \(2 \) is the smallest \(y \) such that \(\hat{f}(x, y) = \hat{f}(x, y+1) \). Indeed, \(\hat{f}(6, 0) = 6, \hat{f}(6, 1) = 3, \hat{f}(6, 2) = \hat{f}(6, 3) = 1 \).

Consider a definite logic program \(\mathcal{P} \) which computes the function \(f \) using a predicate symbol \(\mathcal{f} \in \Delta_n^{n+2} \):

\[
f(k_1, \ldots, k_{n+1}) = k' \text{ iff } \mathcal{P} \models \mathcal{f}(k_1, \ldots, k_{n+1}, k').
\]

Here, numbers are represented by terms built from \(0 \in \Sigma_0, s \in \Sigma_1 \) (i.e., \(0 = 0, 1 = s(0), 2 = s(s(0)), \ldots \)).

Please extend the definite logic program \(\mathcal{P} \) such that it also computes the function \(g \) using the predicate symbol \(\mathcal{g} \in \Delta_n^{n+1} \) (but \textit{without the cut or any other built-in predicate}):

\[
g(k_1, \ldots, k_n) = k \text{ iff } \mathcal{P} \models \mathcal{g}(k_1, \ldots, k_n, k).
\]
Exercise 6 (Programming with CLP): (9 points)

We use Prolog to find solutions for a problem we call “3-tuple covers”. A “3-tuple cover” of the range \{1, \ldots, n\} (where \(n > 0\) is divisible by 3) is a set of 3-tuples

\[
\{(a_1, a_2, a_3), (a_4, a_5, a_6), \ldots, (a_{n-2}, a_{n-1}, a_n)\}
\]

such that all \(a_i\) are pairwise different (i.e., \(\forall i, j : a_i \neq a_j\)), all \(a_i\) are from the set \{1, \ldots, n\} (i.e., \((a_1, \ldots, a_n)\) is a permutation of \(1, \ldots, n\)) and for all 3-tuples, the sum of the first two elements is equal to the last one (i.e, \(\forall i \in \{1, \ldots, n\} : \text{if } (i - 1) \text{ is divisible by } 3, \text{ then } a_i + a_{i+1} = a_{i+2}\)). We want to write a program that finds such 3-tuple covers for any given \(n\). The program might behave arbitrarily if \(n\) is not divisible by 3 or \(n \leq 0\).

Implement a Prolog predicate `cover/2` that finds a satisfying solution for a given \(n\) and returns the list \([a_1, \ldots, a_n]\) in its second argument. It should backtrack to find all valid solutions. Make use of the Prolog clpfd library.

Example:

?- cover(3,X).
\(X = [1, 2, 3] ; \)
\(X = [2, 1, 3]\).

Hints:

- You may only use the built-in predicates `length/2`, `ins/2`, `in/2`, `#=/2`, `all_distinct/1`, `label/1`, the cut and the usual arithmetic operators such as `mod`, `+`, `*`, `-`, `/`. Additionally, you may construct clpfd ranges using the `/2` operator.
- The following is already given: :- use_module(library(clpfd)).