
Logic Programming SS 2013

Solution - Exam 16.09.2013

aaProf. Dr. Jürgen Giesl Carsten Otto

Master Exam Version V3M

First Name:

Last Name:

Immatriculation Number:

Course of Studies (please mark exactly one):

� Informatik Bachelor � Informatik Master

� SSE Master � Other:

Maximal Points Achieved Points

Exercise 1 8

Exercise 2 16

Exercise 3 10

Exercise 4 10

Exercise 5 12

Exercise 6 4

Total 60

Grade -

Instructions:

� On every sheet please give your �rst name, last name, and immatriculation number.

� You must solve the exam without consulting any extra documents (e.g., course notes).

� Make sure your answers are readable. Do not use red or green pens or pencils.

� Please answer the exercises on the exercise sheets. If needed, also use the back sides of the

exercise sheets.

� Answers on extra sheets can only be accepted if they are clearly marked with your name, your

immatriculation number, and the exercise number.

� Cross out text that should not be considered in the evaluation.

� Students that try to cheat do not pass the exam.

� At the end of the exam, please return all sheets together with the exercise sheets.

1

Logic Programming SS 2013

Solution - Exam 16.09.2013

Exercise 1 (Theoretical Foundations): (5 + 3 = 8 points)

Let ' = p(s2(0); 0)^8X (p(s2(X); X)! p(s4(X); s2(X)))^:p(s3(0); s(0)) and = 9Y p(s6(0); Y)

be formulas over the signature (�;�) with � = �0 [�1;�0 = f0g;�1 = fsg, and � = �2 = fpg.

Here, s2(0) stands for s(s(0)), etc.

a) Prove that f'g j= by means of SLD resolution.

Hint: First transform the formula ' ^ : into an equivalent clause set.

b) Explicitly give a Herbrand model of the formula ' (i.e., specify a carrier and a meaning for all

function and predicate symbols). You do not have to provide a proof for your answer.

Solution:

a)

' ^ : , p(s2(0); 0) ^ 8X
(
p(s2(X); X)! p(s4(X); s2(X))

)
^ :p(s3(0); s(0)) ^ :9Y

(
p(s6(0); Y)

)
, p(s2(0); 0) ^ 8X

(
:p(s2(X); X) _ p(s4(X); s2(X))

)
^ :p(s3(0); s(0)) ^ :9Y

(
p(s6(0); Y)

)
, p(s2(0); 0) ^ 8X

(
:p(s2(X); X) _ p(s4(X); s2(X))

)
^ :p(s3(0); s(0)) ^ 8Y

(
:p(s6(0); Y)

)
, 8X; Y

(
p(s2(0); 0) ^ (:p(s2(X); X) _ p(s4(X); s2(X))) ^ :p(s3(0); s(0)) ^ :p(s6(0); Y)

)

Thus, the equivalent clause set for ' ^ : is

fp(s2(0); 0)g; f:p(s2(X); X); p(s4(X); s2(X))g; f:p(s3(0); s(0))g; f:p(s6(0); Y)g.

We perform SLD resolution on this clause set to show f'g j= .

fp(s2(0); 0)g f:p(s2(X); X); p(s4(X); s2(X))g f:p(s3(0); s(0))g f:p(s6(0); Y)g

f:p(s4(0); s2(0))g

X=s2(0); Y=s4(0)

f:p(s2(0); 0)g

X=0

�

Hence, we have proven f'g j= .

�

2

Logic Programming SS 2013

Solution - Exam 16.09.2013

b) We have S j= ' for the Herbrand structure S = (T (�); �) with �0 = 0; �s(t) = s(t), and

�p = f(si+2(0); si(0)) j i � 0 ^ i 6= 1g

.

3

Logic Programming SS 2013

Solution - Exam 16.09.2013

Exercise 2 (Procedural Semantics, SLD tree): (7 + 7 + 2 = 16 points)

Consider the following Prolog program P which can be used to replace the letter sequence 'ba' by 'zz':

replace([], []).

replace([b,a|XS], [z,z|YS]) :- replace(XS, YS).

replace([X|XS], [X|YS]) :- replace(XS, YS).

For example, the query ?- replace([b,a,b,a], Z) would give the answer substitution Z = [z,z,z,z].

Due to backtracking it is also possible to leave (parts of) the word unchanged. Because of that the

answer substitutions Z = [b,a,z,z], Z = [z,z,b,a], and Z = [b,a,b,a] are also possible.

a) Consider the following query:

?- replace([a,b,b,a], Res).

For the logic program P please show a successful computation for the query above (i.e., a com-

putation of the form (G;?) `+
P
(�; �) where G = f:replace([a,b,b,a], Res)g). It su�ces

to give substitutions only for those variables which are used to de�ne the value of the variable Res

in the query.

b) Please give a graphical representation of the SLD tree for the query

?- replace([a,b,b,a], Res).

in the program P.

c) Modify the program P by inserting a single cut. No other modi�cation is allowed. Your modi�ed

program must replace all ocurrences of 'ba' by 'zz'.

For example, now the query ?- replace([b,a,b,a], Z) must have the only answer substitution

Z = [z,z,z,z].

Solution:

a)

(f:replace([a,b,b,a], Res)g;?)

`P (f:replace([b,b,a], YS)g; {Res / [a|YS]}g)

`P (f:replace([b,a], YS')g; {Res / [a,b|YS']}g)

`P (f:replace([], YS�)g; {Res / [a,b,z,z|YS�]})

`P (�; {Res / [a,b,z,z]})

Alternative:

(f:replace([a,b,b,a], Res)g;?)

`P (f:replace([b,b,a], YS)g; {Res / [a|YS]}g)

`P (f:replace([b,a], YS')g; {Res / [a,b|YS']}g)

`P (f:replace([a], YS�)g; {Res / [a,b,b|YS�]})

`P (f:replace([], YS�')g; {Res / [a,b,b,a|YS�']})

`P (�; {Res / [a,b,b,a]})

4

Logic Programming SS 2013

Solution - Exam 16.09.2013

b)

replace([a,b,b,a], Res)

replace([b,b,a], YS)

Res / [a|YS]

replace([b,a], YS')

YS / [b|YS']

replace([a], YS�)

YS' / [b|YS�]

replace([], YS�')

YS� / [a|YS�']

�

YS�' / []

replace([], YS�)

YS' / [z,z|YS�]

�

YS� / []

c) replace([], []).

replace([b,a|XS], [z,z|YS]) :- !, replace(XS, YS).

replace([X|XS], [X|YS]) :- replace(XS, YS).

.

5

Logic Programming SS 2013

Solution - Exam 16.09.2013

Exercise 3 (Fixpoint Semantics): (4 + 3 + 3 = 10 points)

Consider the following logic program P over the signature (�;�) with � = fa; qg and � = fpg.

p(a, a, Z).

p(q(Y), q(X), Z) :- p(X, Y, Z).

a) For each n 2 N explicitly give transn
P
(?) in closed form, i.e., using a non-recursive de�nition.

b) Compute the set lfp(transP).

c) Give F JP; f:p(X, Y, Z)gK.

Solution:

Let G be the set of all ground terms, i.e., G = fqi(a) j i 2 Ng.

a) foo trans0P(?) = ?

trans1P(?) = fp(a; a; t) j t 2 Gg

trans2P(?) = fp(q(a); q(a); t) j t 2 Gg [trans1P(?)

trans3P(?) = fp(q2(a); q2(a); t) j t 2 Gg [trans2P(?)

...

transnP(?) = fp(qi(a); qi(a); t) j t 2 G; 0 � i < ng

b) lfp(transP) = fp(qi(a); qi(a); t) j t 2 G; i � 0g

c) F JP; f:p(X, Y, Z)gK = fp(t; t; t 0) j t; t 0 2 Gg

.

6

Logic Programming SS 2013

Solution - Exam 16.09.2013

Exercise 4 (Universality): (10 points)

Consider a function f : Nn+1 ! N. The function g : Nn ! N is de�ned as:

g(k1; : : : ; kn) = k i� f (k1 + k; : : : ; kn + k; k) = 0 and

for all 0 � k 0 < k we have f (k1 + k
0; : : : ; kn + k

0; k 0) is de�ned and

f (k1 + k
0; : : : ; kn + k

0; k 0) > 0

As an example, consider the function f̂ : N2 ! N with f̂ (x; y) = maxfx � 4y ; 0g. The function

ĝ : N ! N, constructed as described above, computes ĝ(6) = 2. The reason is that for x = 6, 2 is

the smallest y such that f̂ (x + y ; y) = 0. Indeed, f̂ (6+0; 0) = f̂ (6; 0) = 6; f̂ (6+1; 1) = f̂ (7; 1) =

3; f̂ (6+2; 2) = f̂ (8; 2) = 0.

Consider a de�nite logic program P which computes the function f using a predicate symbol f 2 �n+2:

f (k1; : : : ; kn+1) = k 0 i� P j= f(k1; : : : ; kn+1; k
0):

Here, numbers are represented by terms built from 0 2 �0; s 2 �1 (i.e., 0 = 0; 1 = s(0); 2 =

s(s(0)); : : :).

Please extend the de�nite logic program P such that it also computes the function g using the predicate

symbol g 2 �n+1 (but without the cut or any other built-in predicate):

g(k1; : : : ; kn) = k i� P j= g(k1; : : : ; kn; k):

Solution:

g(X1; : : : ; Xn; Z) : � f0(X1; : : : ; Xn; 0; Z):

f0(X1; : : : ; Xn; Y; Y) : � f(X1; : : : ; Xn; Y; 0):

f0(X1; : : : ; Xn; Y; Z) : � f(X1; : : : ; Xn; Y; s(U)); f
0(s(X1); : : : ; s(Xn); s(Y); Z):

.

7

Logic Programming SS 2013

Solution - Exam 16.09.2013

Exercise 5 (De�nite Logic Programming): (12 points)

Implement the predicate noDupl/2 in Prolog. This predicate can be used to identify numbers in a list

that appear exactly once, i.e., numbers which are no duplicates. The �rst argument of noDupl is the

list to analyze. The second argument is the list of numbers which are no duplicates, as described below.

As an example, for the list [2; 0; 3; 2; 1] the result [0; 3; 1] is computed (because 2 is a duplicate). In

Prolog the corresponding call noDupl([s(s(0)), 0, s(s(s(0))), s(s(0)), s(0)], Res) gives the

answer substitution Res = [0, s(s(s(0))), s(0)].

In your implementation you may (only) use the following two prede�ned predicates:

� contained(X, XS) is true if and only if the list XS contains X.

� notContained(X, XS) is true if and only if the list XS does not contain X.

Important: You may not use the cut or any other prede�ned predicates in your implementation!

However, you may implement auxiliary predicates.

Solution:

noDupl(XS, Res) :- help(XS, [], Res).

help([], _, []).

help([X|XS], Seen, [X|Res]) :- notContained(X, XS), notContained(X, Seen),

help(XS, [X|Seen], Res).

help([X|XS], Seen, Res) :- contained(X, Seen), help(XS, Seen, Res).

help([X|XS], Seen, Res) :- contained(X, XS), help(XS, [X|Seen], Res).

Not part of the solution, but useful to test:

contained(X, [X|_]).

contained(X, [_|XS]) :- contained(X, XS).

notContained(_, []).

notContained(X, [Y|ZS]) :- ne(X, Y), notContained(X, ZS).

ne(0, s(_)).

ne(s(_), 0).

ne(s(X), s(Y)) :- ne(X, Y).

.

8

Logic Programming SS 2013

Solution - Exam 16.09.2013

Exercise 6 (Arithmetic): (4 points)

Tetration is the logical extension of multiplication and exponentiation:

multiplication a � n := a + a + � � �+ a︸ ︷︷ ︸
n

exponentation an := a � a � : : : � a︸ ︷︷ ︸
n

tetration a "" n := a

(
a�

�

�

(aa)
)

︸ ︷︷ ︸
n

Examples:

� 4 "" 2 = 44 = 256

� 1 "" 3 = 1(1
1) = 11 = 1

� 2 "" 4 = 2

(
2(2

2)
)
= 2(2

4) = 216 = 65:536

Implement the predicate tetration/3 in Prolog. For numbers x > 0; y > 0 the call tetration(x; y , Z)

gives the answer substitution Z = m where m is x "" y .

As an example, tetration(2, 4, Z) gives the answer substitution Z = 65536.

Your predicate only needs to work on input values x > 0; y > 0, i.e., for other input values the result of

the computation is irrelevant.

Hint: To compute xy in Prolog you can use x**y.

Solution:

tetration(X, 1, X).

tetration(X, Y, Z) :- Y > 1, A is Y - 1, tetration(X, A, B), Z is X**B.

.

9

