Logic Programming SS 2015
Solution - Exam 19.08.2015

LuFG

Informatik Il

Prof. Dr. Jirgen Giesl Cornelius Aschermann, Jera Hensel

Master Exam Version V3M

First Name:

Last Name:

Immatriculation Number:

Course of Studies (please mark exactly one):

o Informatik Bachelor o Informatik Master
o SSE Master o Other:
Maximal Points | Achieved Points
Exercise 1 13
Exercise 2 10
Exercise 3 11
Exercise 4 14
Exercise 5 6
Exercise 6 6
| Total | 60 | |
] Grade \ - \ ‘

Instructions:
e On every sheet please give your first name, last name, and immatriculation number.
e You must solve the exam without consulting any extra documents (e.g., course notes).
e Make sure your answers are readable. Do not use red or green pens or pencils.

e Please answer the exercises on the exercise sheets. If needed, also use the back sides of the
exercise sheets.

e Answers on extra sheets can only be accepted if they are clearly marked with your name, your
immatriculation number, and the exercise number.

e Cross out text that should not be considered in the evaluation.
e Students that try to cheat do not pass the exam.

e At the end of the exam, please return all sheets together with the exercise sheets.

Logic Programming SS 2015
Solution - Exam 19.08.2015

LuFG

Informatik Il

Exercise 1 (Theoretical Foundations): (4 + 4 + 5 = 13 points)

Let o = p(0,0) AVX,Y (p(X,Y) = p(Y,s(X))) and ¥ = 3Zp(Z, s(Z)) be formulas over the signature
(Z, A) with 2 =2gUX1,2X0= {O}, > = {S}, and A = A, = {p}

a) Prove that {¢p} E ¥ by means of SLD resolution.
Hint: First transform the formula @ A =% into an equivalent clause set.

b) Explicitly give a Herbrand model of the formula ¢ (i.e., specify a carrier and a meaning for all
function and predicate symbols). You do not have to provide a proof for your answer.

c) Prove or disprove: If K is a set of clauses without variables, S is a model of K, K1, K> € K and
R is a resolvent of K3 and K>, then S is a model of K U {R}.

Solution:

A=Y < p(0,0) AVX,Y (p(X,Y) = p(Y.s(X))) A =3Zp(Z,5(2))
< p(0,0) AVX,Y (=p(X,Y)Vp(Y,s(X)))A—=3Zp(Z,s(2))
< p(0,0) AVX,Y (—p(X,Y) Vp(Y,s(X))) AVZ —p(Z,s(2))
& VXY, Z(p(0,0) A (—=p(X,Y) Vp(Y.s(X))) A—p(Z,8(2)))

Thus, the equivalent clause set for ¢ A =9 is {p(0,0)}, {=p(X,Y),p(Y,s(X))}, {-p(Z, s(2))}.
We perform SLD resolution on this clause set to show {@} = .

{p(0,0)} {=p(X,Y), p(Y,s(X))} {=p(Z.s(2))}
Y/Z,X/Z /
{-p(Z, 2)}
Z/0
O

Hence, we have proven {¢} = 9.

b) We have S |= ¢ for the Herbrand structure S = (7(X), @) with ag = 0, as(t) = s(t), and
o, = {(s(0),8'(0)) [i =0} U {(s'(0),s""1(0)) | i >0}

Alternative solution: oy = T(X) x T(X)

. Logic Programming SS 2015
Solution - Exam 19.08.2015

Informatik Il

c) Let S be a model of K. Then there is a literal L € K7 such that L € K> and R = (K1 \ {L}) U
(Ko \ {L}). Assume S [~ KU{R}. With S = K it follows that S}~ R. If S = L, S |= K> implies
SE Ky \{L}and hence SER. If SEL, S| Ky implies S = K1\ {L} and hence S &= R.
Therefore, each model of K is also a model of K U{R}.

Logic Programming SS 2015
Solution - Exam 19.08.2015

LuFG

Informatik Il

Exercise 2 (Procedural Semantics, SLD tree): (5 + 5 = 10 points)

Consider the following Prolog program P which can be used to check whether a list contains 4 or 6,
but it does not contain any 2 before the first 4 or 6.

e(2).

e(4).

e(6).

pCIXI_1):- e(X),!,not(X = 2).
pC(L_1XS]):- p(XS).

not(X):- X,!,fail.

not (_).

As an example, the query p([1,2,4,8]) would not be provable (since it contains a 2 and there is no 4
or 6 before).

a) The program P’ results from P by removing both cuts. Consider the following query:
7- p([1,2,4,8]).
For the logic program P’ (i.e., without the cuts), please show a successful computation for the

query above (i.e., a computation of the form (G, @) I—;, (O, 0) where G = {-p[1,2,4,81}). You
may leave out the negations in the queries.

b) Please give a graphical representation of the SLD tree for the query
7- p([1,4]).
in the program P (i.e., with the cuts). For every part of a tree that is cut off by evaluating !,

please indicate the cut by marking the corresponding edge. For the cut-off parts only indicate the
first cut-off goal, but do not evaluate further.

Solution:

Fp ({p([1,2,4,81)}.{})

Fpr ({p([2,4,8]1)},{X8/[2,4,8]})

Fp ({p([4,8]1)}, {Xs/[2,4,8],Xs’/[4,8]})

Fp ({e(4) ,not(4=2) }, {X/4,X8/[2,4,8]1,XsS’/[4,8]})
Fp ({not (4=2)}, {X/4,Xs/[2,4,8],XS’/[4,8]})

Fpo (O, {X/4,X8/[2,4,8],X8°/[4,8]})

. Logic Programming SS 2015
Solution - Exam 19.08.2015

Informatik Il

b) SLD Tree
p([1,4])

/

e(1),!, not(1=2) p([41)

4

4 e(4),!,not(4=2) p([D)

I ,not (4=2)

not (4=2)

4=2,1 ,fail O

Logic Programming SS 2015
Solution - Exam 19.08.2015

LuFG

Informatik Il

Exercise 3 (Fixpoint Semantics): (5 + 3 + 3 = 11 points)

Consider the following logic program P over the signature (£, A) with ¥ = {0, s} and A = {p}.
p(0, X).
p(sX), s(s(¥))) - pX, V).

a) For each n € N explicitly give trans,(@) in closed form, i.e., using a non-recursive definition.

b) Compute the set Ifp(transp).
c) Give F[P, {-p(s(s(0)), X)}].

Solution:

Let G be the set of all ground terms, i.e., G = {s/(0) | i € N} = T(X).

a) transh(2) = @
transh () = {p(0,) | t € G}
trans (27) = {p(s(0), s%(1) | t € G} U transh ()
transd (27) = {p(s3(0), s4(1)) | t € G} Utrans},(2)

transp(@) = {p(s'(0), s*(t)) [t € G,0 < i < n}

b) Ifp(transp) = {p(s'(0),s*(t)) | t € G,i > 0} (={p(s'(0), 8/(0)) | i = 0,j > 2i})
c) FIP. {-p(s(c(0)), X)}] = {p(s?(0).5*(t)) [t € G} (= {p(s%(0),5**(0)) | i > 0})

Logic Programming SS 2015
Solution - Exam 19.08.2015

LuFG

Informatik Il

Exercise 4 (Definite Logic Programming): (7 + 7 = 14 points)

a) We consider Deterministic Finite Automata (DFAs). An example for such an automaton is given
below. It accepts all words where the number of “a” characters in the word is even.

b b

a
start H
a

We encode this automaton into Prolog facts as follows:

start (s0).
final (s0).
delta(s0,a,s1).
delta(s1l,a,s0).
delta(s1l,b,sl1).
delta(s0,b,s0).

As a quick reminder: A DFA is a five-tuple (Q, X, 0, qo, F). Here, Q is a set of states (in our
case {sp,s1}), X is the set of alphabet symbols (in our case {a,b}). The transition function é:
Q@ X ¥ — Q maps the current state to the next state given that a certain symbol from ¥ was
read. The automaton starts in the start state gg and accepts the word if it stops in a final state
from the set F C Q (in our case F = {sp}).

We say that an automaton (Q, X, , qo, F) accepts a word w = (a1, a, . . ., an) € X" if there is a
run go - g1 -2 go = -+ 2% @, such that for all i € {1 ..., n} it holds that 6(gi_1,a;) = qi
and g, € F.

In the example above, we encoded the start state qg with the fact start(s0), the set of final
states F is encoded by the fact final (s0), the transition function is encoded by the delta/3
predicate such that delta(q;, a, g;) holds iff (g;, a) = g;. The sets Q and ¥ are implicitly
defined by the arguments of delta.

Implement a predicate accepts/1. The query: 7- accepts(Word) should succeed iff the DFA
accepts the given word. In our example, the query ?- accepts([a,b,al) should succeed but the
query ?- accepts([a,b]) should fail. Your clause for accepts should work for any DFA (i.e.,
for any clauses defining start, final, and delta).

Logic Programming SS 2015
Solution - Exam 19.08.2015

LuFG

Informatik Il

b) Consider the set partition problem: Given a set S = {as,..., an} of integer numbers, find a
partition of S into two sets L and R such that

® 2 el ai=2,eR a
e /lUR=S
e [NR=g.

Implement a predicate partition/3 such that ?- partition(S,L,R) succeeds iff L and R are
a valid partition of S. For example, partition([1,2,3],L,R) should succeed with answer sub-
stitution L = [1,2], R = [3]. On lists with duplicate entries your implementation may behave
arbitrarily.

Solution:

a) Finite Automaton

run_on(State,[]) :- fimnal(State).
run_on(State, [C|Word]) :- delta(State,C,StateN), run_on(StateN,Word).
accepts(Word):- start(State), run_on(State,Word).

b) Set Partition

partition_helper([], [J, [1, O, 0).

partition_helper ([X|XS], [XIL], R, SUML, SUMR) :-
partition_helper (XS, L, R, SUMN, SUMR), SUML is SUMN+X.

partition_helper ([X|XS], L, [X|R], SUML, SUMR) :-
partition_helper (XS, L, R, SUML, SUMN), SUMR is SUMN+X.

partition(S, L, R) :- partition_helper(S, L, R, X, X).

Logic Programming SS 2015
Solution - Exam 19.08.2015

LuFG

Informatik Il

Exercise 5 (Universality): (6 points)

Consider a function f : N"*1 — N. The function g : N1 — N is defined as:

g(ky, ..., kn, m) = k iff f(ky,..., Kn, k) = m and
for all 0 < k' < k we have f(ki, ..., kn, k') is defined and f(kg, ..., kn, k') < m

As an example, consider the function f : N® — N with f(x,y, k) = x — y + k. The function
g : N3 — N, constructed as described above, computes §(2,1,3) = 2. The reason is that for
x = 2,y = 1, 2 is the smallest k such that f(x,y, k) = 3 and f(x,y, k') < 3 for all 0 < K < k.
Indeed, £(2,1,0) =1, 7(2,1,1) =2, f(2,1,2) = 3. On the other hand, §(5, 0, 4) is undefined, because

for k' = 0 we already have 7(5,0,0) > 4.

Consider a definite logic program P which computes the function f using a predicate symbol £ € A"2:

Here, numbers are represented by terms built from 0 € ¥g9,s € ¥ (ie., 0 = 0,1 = s(0),2 =

s(s(0)),...). -

Please extend the definite logic program P such that it also computes the function g using the predicate
symbol g € A2 (but without any built-in predicates):

Solution:

g(X1, ..., XM, Z) = £ (Xq,..., Xn, M, 0,2).

£f(Xy, ..., Xn MY,Y): — £(Xq, ..., Xn, Y, M).

(X1, X MUY, Z) = £(X1, ... X, Y, A), smaller(A M), £(X1, ..., Xo. M, s(Y), Z).
(X1, ..., Xn MY, Z): — £(Xq, ..., Xn, Y, A), smaller(M, A), £'(X1, ..., Xn, MY, Z).
smaller(0,s(_)).

smaller(s(X),s(Y)): — smaller(X,Y).

Logic Programming SS 2015
Solution - Exam 19.08.2015

LuFG

Informatik Il

Exercise 6 (Programming with CLP): (6 points)

In this task, we use Prolog to solve simple systems of equations. Here, the Prolog list
(30, B, C], [20, A, C], [10, A, B]]
encodes the following system of equations.

30=B+C
20=A+C
10=A+B
0<A<I100
0 < B <100
0<C <100

We require that variables may only be instantiated by integers between 0 and 100. The first element
of every equation is always a constant. All other elements are always variables. There will always be at
least one variable and there may be more variables than in the example. E.g., [[5, A, B, C ,D], [5,
A1] would be a valid system of equations.

Implement a Prolog predicate solve/1 that finds a satisfying solution for such equation systems.
For example, the query ?- solve([[30, B, C], [20, A, C], [10, A, B]]), label([A, B, C])
should succeed with the unique substitution A = 0, B = 10, C = 20.

The following line is already given:

:- use_module(library(clpfd)) .

Solution:

:- use_module(library(clpfd)).

sum ([], 0).
sum ([X[|XS], Z):- X in 0..100, sum(XS,ZP), Z #= X + ZP.

solve_eqn ([CONST|VARS]) :- sum(VARS,CONST).

solve ([]1).
solve ([E|EQS]):- solve_eqn(E), solve(EQS).

10

