
Aachen
Department of Computer Science

Technical Report

Automated Termination Proofs for

Java Programs with Cyclic Data

Marc Brockschmidt, Richard Musiol, Carsten Otto, Jürgen

Giesl

ISSN 0935–3232 · Aachener Informatik-Berichte · AIB-2012-06

RWTH Aachen · Department of Computer Science · April 2012

The publications of the Department of Computer Science of RWTH Aachen

University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Automated Termination Proofs for Java

Programs with Cyclic Data⋆

Marc Brockschmidt, Richard Musiol, Carsten Otto, and Jürgen Giesl

LuFG Informatik 2, RWTH Aachen University, Germany

Abstract. In earlier work, we developed a technique to prove termina-
tion of Java programs automatically: first, Java programs are automat-
ically transformed to term rewrite systems (TRSs) and then, existing
methods and tools are used to prove termination of the resulting TRSs.
In this paper, we extend our technique in order to prove termination of
algorithms on cyclic data such as cyclic lists or graphs automatically. We
implemented our technique in the tool AProVE and performed extensive
experiments to evaluate its practical applicability.

1 Introduction

Techniques to prove termination automatically are essential in program verifi-
cation. While approaches and tools for automated termination analysis of term
rewrite systems (TRSs) and of logic programs have been studied for decades, in
the last years the focus has shifted toward imperative languages like C or Java.

Most techniques for imperative languages prove termination by synthesizing
ranking functions (e.g., [11, 26]) and localize the termination test using Ramsey’s
theorem [23, 27]. Such techniques are for instance used in the tools Terminator [4,
12] and LoopFrog [22, 31] to analyze termination of C programs. To handle the
heap, one can use an abstraction [13] to integers based on separation logic [24].

On the other hand, there also exist transformational approaches which au-
tomatically transform imperative programs to TRSs or to logic programs. They
allow to re-use the existing techniques and tools from term rewriting or logic
programming also for imperative programs. In [16], C is analyzed by a transfor-
mation to TRSs and the tools Julia [30] and COSTA [2] prove termination of Java
via a transformation to constraint logic programs. To deal with the heap, they
also use an abstraction to integers and represent objects by their path length.

In [6–8, 25] we presented an alternative approach for termination of Java via
a transformation to TRSs. Like [2, 30], we consider Java Bytecode (JBC) to avoid
dealing with all language constructs of Java. This is no restriction, since Java

compilers automatically translate Java to JBC. Indeed, our implementation han-
dles the Java Bytecode produced by Oracle’s standard compiler. In contrast to
other approaches, we do not treat the heap by an abstraction to integers, but
by an abstraction to terms. So for any class Cl with n non-static fields, we use
an n-ary function symbol Cl. For example, consider a class List with two fields
value and next. Then every List object is encoded as a term List(v, n) where

⋆ Supported by the DFG grant GI 274/5-3

2

v is the value of the current element and n is the encoding of the next element.
Hence, a list “[1, 2]” is encoded by the term List(1, List(2, null)). In this way, our
encoding maintains much more information from the original program than a
(fixed) abstraction to integers. Now the advantage is that for any algorithm, ex-
isting tools from term rewriting can automatically search for (possibly different)
suitable well-founded orders comparing arbitrary forms of terms. For more in-
formation on techniques for termination analysis of term rewriting, see, e.g., [15,
19, 33]. As shown in the annual International Termination Competition,1 due to
this flexibility, the implementation of our approach in the tool AProVE [18] is
currently the most powerful termination prover for Java.

In this paper, we extend our technique to handle algorithms whose termina-
tion depends on cyclic objects (e.g., lists like “[0, 1, 2, 1, 2, . . .]” or cyclic graphs).
Up to now, transformational approaches could not deal with such programs. Si-
milar to related approaches based on separation logic [4, 5, 9, 10, 28, 32], our tech-
nique relies on suitable predicates describing properties of the heap. Like [28],
but in contrast to several previous works, our technique derives these heap pre-
dicates automatically from the input program and it works automatically for ar-
bitrary data structures (i.e., not only for lists). We integrated this new technique
in our fully automated termination analysis and made the resulting termination
tool available via a web interface [1]. This tool automatically proves termination
of Java programs on possibly cyclic data, i.e., the user does not have to provide
loop preconditions, invariants, annotations, or any other manual pre-processing.

Our technique works in two steps: first, a JBC program is transformed into
a termination graph, which is a finite representation of all program runs. This
graph takes all sharing effects into account. Afterwards, a TRS is generated from
the graph. In a similar way, we also developed techniques to analyze termination
of other languages like Haskell [20] or Prolog [29] via a translation to TRSs.

Of course, one could also transform termination graphs into other formalisms
than TRSs. For example, by fixing the translation from objects to integers, one
could easily generate integer transition systems from the termination graph.
Then the contributions of the current paper can be used as a general pre-proces-
sing approach to handle cyclic objects, which could be coupled with other ter-
mination tools. However, for methods whose termination does not rely on cyclic
data, our technique is able to transform data objects into terms. For such meth-
ods, the power of existing tools for TRSs allows us to find more complex termi-
nation arguments automatically. By integrating the contributions of the current
paper into our TRS-based framework, the resulting tool combines the new ap-
proach for cyclic data with the existing TRS-based approach for non-cyclic data.

In Sect. 2-4, we consider three typical classes of algorithms which rely on
data that could be cyclic. The first class are algorithms where the cyclicity is
irrelevant for termination. So for termination, one only has to inspect a non-
cyclic part of the objects. For example, consider a doubly-linked list where the
predecessor of the first and the successor of the last element are null. Here,
a traversal only following the next field obviously terminates. To handle such

1 See http://termination-portal.org/wiki/Termination_Competition

3

algorithms, in Sect. 2 we recapitulate our termination graph framework and
present a new improvement to detect irrelevant cyclicity automatically.

The second class are algorithms that mark every visited element in a cyclic
object and terminate when reaching an already marked element. In Sect. 3, we
develop a technique based on SMT solving to detect such marking algorithms by
analyzing the termination graph and to prove their termination automatically.

The third class are algorithms that terminate because an element in a cyclic
object is guaranteed to be visited a second time (i.e., the algorithms terminate
when reaching a specified sentinel element). In Sect. 4, we extend termination
graphs by representing definite sharing effects. Thus, we can now express that by
following some field of an object, one eventually reaches another specific object.
In this way, we can also prove termination of well-known algorithms like the
in-place reversal for pan-handle lists [9] automatically.

We implemented all our contributions in the tool AProVE. Sect. 5 shows their
applicability by an evaluation on a large benchmark collection (including numer-
ous standard Java library programs, many of which operate on cyclic data). In
our experiments, we observed that the three considered classes of algorithms cap-
ture a large portion of typical programs on cyclic data. For the treatment of (gen-
eral classes of) other programs, we refer to our earlier papers [6, 7, 25]. Moreover,
in [8] we presented a technique that uses termination graphs to also detect non-
termination. By integrating the new contributions of the current paper into our
approach, our tool can now automatically prove termination for programs that
contain methods operating on cyclic data as well as other methods operating on
non-cyclic data. For the proofs of the theorems as well as all formal definitions
needed for the construction of termination graphs, we refer to the appendix.

2 Handling Irrelevant Cycles

We restrict ourselves to programs without method calls, arrays, exception han-
dlers, static fields, floating point numbers, class initializers, reflection, and multi-
threading to ease the presentation. However, our implementation supports these
features, except reflection and multithreading. For further details, see [6–8].

class L1 {

L1 p, n;

static int length(L1 x) {

int r = 1;

while (null != (x = x.n))

r++;

return r; }}

Fig. 1. Java Program

00: iconst_1 #load 1

01: istore_1 #store to r

02: aconst_null #load null

03: aload_0 #load x

04: getfield n #get n from x

07: dup #duplicate n

08: astore_0 #store to x

09: if_acmpeq 18 #jump if

x.n == null

12: iinc 1, 1 #increment r

15: goto 02

18: iload_1 #load r

19: ireturn #return r

Fig. 2. JBC for length

In Fig. 1, L1 is a class for
(doubly-linked) lists where n and
p point to the next and previous
element. For brevity, we omitted a
field for the value of elements. The

4

method length initializes a variable r for the result and traverses the list until
x is null. Fig. 2 shows the corresponding JBC obtained by the Java compiler.

After introducing program states in Sect. 2.1, we explain how termination
graphs are generated in Sect. 2.2. Sect. 2.3 shows the transformation from ter-
mination graphs to TRSs. While this two-step transformation was already pre-
sented in our earlier papers, here we extend it by an improved handling of cyclic
objects in order to prove termination of algorithms like length automatically.

2.1 Abstract States in Termination Graphs

00 |x :o1 |ε
o1:L1(?) o1	{p,n}

Fig. 3. State A

We generate a graph of abstract states from States = PPos×
LocVar × OpStack × Heap × Annotations, where PPos

is the set of all program positions. Fig. 3 depicts the initial state
for the method length. The first three components of a state are in the first
line, separated by “|”. The first component is the program position, indicated
by the index of the next instruction. The second component represents the local
variables as a list of references, i.e., LocVar = Refs

∗.2 To ease readability, in
examples we denote local variables by names instead of numbers. So “x : o1”
indicates that the 0-th local variable x has the value o1. The third component is
the operand stack OpStack = Refs

∗ for temporary results of JBC instructions.
The empty stack is denoted by ε and “o1, o2” is a stack with top element o1.

Below the first line, information about the heap is given by a function from
Heap = Refs → Ints ∪ Unknown ∪ Instances ∪ {null} and by a set of
annotations specifying sharing effects in parts of the heap that are not explic-
itly represented. For integers, we abstract from the different types of bounded
integers in Java and consider unbounded integers instead, i.e., we cannot handle
problems related to overflows. We represent unknown integers by intervals, i.e.,
Ints = {{x ∈ Z | a ≤ x ≤ b} | a ∈ Z ∪ {−∞}, b ∈ Z ∪ {∞}, a ≤ b}. For
readability, we abbreviate intervals such as (−∞,∞) by Z and [1,∞) by [>0].

LetClassnames contain all classes and interfaces in the program. The values
Unknown = Classnames×{?} denote that a reference points to an unknown
object or to null. Thus, “o1 : L1(?)” means that at address o1, we have an
instance of L1 (or of its subclasses) with unknown field values or that o1 is null.

To represent actual objects, we use Instances = Classnames×(FieldIDs

→ Refs), where FieldIDs is the set of all field identifiers. To prevent ambi-
guities, in general the FieldIDs also contain the respective class names. Thus,
“o2:L1(p = o3, n = o4)” means that at address o2, we have some object of type
L1 whose field p contains the reference o3 and whose field n contains o4.

In our representation, if a state contains the references o1 and o2, then the ob-
jects reachable from o1 resp. o2 are disjoint3 and tree-shaped (and thus acyclic),
unless explicitly stated otherwise. This is orthogonal to the default assumptions

2 To avoid a special treatment of integers (which are primitive values in JBC), we also
represent them using references to the heap.

3 An exception are references to null or Ints, since in JBC, integers are primitive
values where one cannot have any side effects. So if h is the heap of a state and
h(o1) = h(o2) ∈ Ints or h(o1) = h(o2) = null, then one can always assume o1 = o2.

5

in separation logic, where sharing is allowed unless stated otherwise, cf. e.g. [32].
In our states, one can either express sharing directly (e.g., “o1: L1(p = o2, n =
o1)” implies that o1 reaches o2 and is cyclic) or use annotations to indicate
(possible) sharing in parts of the heap that are not explicitly represented.

The first kind of annotation is the equality annotation o =? o′, meaning that
o and o′ could be the same. We only use this annotation if h(o) ∈ Unknown or
h(o′) ∈ Unknown, where h is the heap of the state. The second annotation is
the joinability annotation o %$ o′, meaning that o and o′ possibly have a common

successor. To make this precise, let o1
f
→ o2 denote that the object at o1 has

a field f ∈ FieldIDs with o2 as its value (i.e., h(o1) = (Cl, e) ∈ Instances

and e(f) = o2). For any π = f1 . . . fn ∈ FieldIDs
∗, o1

π
→ on+1 denotes that

there exist o2, . . . , on with o1
f1→ o2

f2→ . . .
fn−1

→ on
fn→ on+1. Moreover, o1

ε
→ o′1

iff o1 = o′1. Then o %$ o′ means that there could be some o′′ and some π and τ

such that o
π
→ o′′

τ
← o′, where π 6= ε or τ 6= ε.

In our earlier papers [6, 25] we had another annotation to denote references
that may point to non-tree-shaped objects. In the translation to terms later on,
all these objects were replaced by fresh variables. But in this way, one cannot
prove termination of length. To maintain more information about possibly non-
tree-shaped objects, we now introduce two new shape annotations o♦ and o	FI

instead. The non-tree annotation o♦ means that o might be not tree-shaped.
More precisely, there could be a reference o′ with o

π1→ o′ and o
π2→ o′ where π1 is

no prefix of π2 and π2 is no prefix of π1. However, these two paths from o to o′

may not traverse any cycles (i.e., there are no prefixes τ1, τ2 of π1 or of π2 where

τ1 6= τ2, but o
τ1→ o′′ and o

τ2→ o′′ for some o′′). The cyclicity annotation o	FI

means that there could be cycles including o or reachable from o. However,
any cycle must use at least the fields in FI ⊆ FieldIDs. In other words, if
o

π
→ o′

τ
→ o′ for some τ 6= ε, then τ must contain all fields from FI . We often

write 	 instead of 	∅. Thus in Fig. 3, o1	{p,n} means that there may be cycles
reachable from o1 and that any such cycle contains at least one n and one p field.

2.2 Constructing the Termination Graph

Our goal is to prove termination of length for all doubly-linked lists without
“real” cycles (i.e., there is no cycle traversing only n or only p fields). Hence,
A is the initial state when calling the method with such an input list.4 From
A, the termination graph in Fig. 4 is constructed by symbolic evaluation. First,
iconst 1 loads the constant 1 on the operand stack. This leads to a new state
connected to A by an evaluation edge (we omitted this state from Fig. 4 for
reasons of space). Then istore 1 stores the constant 1 from the top of the
operand stack in the first local variable r. In this way, we obtain state B (in
Fig. 4 we use dotted edges to indicate several steps). Formally, the constant 1 is
represented by some reference i ∈ Refs that is mapped to [1, 1] ∈ Ints by the
heap. However, we shortened this for the presentation and just wrote r : 1.

4 The state A is obtained automatically when generating the termination graph for a
program where length is called with an arbitrary such input list, cf. Sect. 5.

6

00 |x :o1 |ε
o1:L1(?) o1	{p,n}

A

02 |x :o1, r :1 |ε
o1:L1(?) o1	{p,n}

B

04 |x :o1, r :1 |o1, null
o1:L1(?) o1	{p,n}

C

04 |x :null, r :1 |null, null D

04 |x :o2, r :1 |o2, null
o2:L1(p=o3, n=o4)
o3:L1(?) o4:L1(?)
o2%$o3 o2%$o4 o3%$o4
o2, o3, o4	{p,n}

E

09 |x :o4, r :1 |o4, null
o4:L1(?) o4	{p,n}

F

09 |x :null, r :1 |null, null G 09 |x :o5, r :1 |o5, null
o5:L1(p=o6, n=o7)
o6:L1(?) o7:L1(?)
o5%$o6 o5%$o7 o6%$o7
o5, o6, o7	{p,n}

H

02 |x :o5, r :2 |ε
o5:L1(p=o6, n=o7)
o6:L1(?) o7:L1(?)
o5%$o6 o5%$o7 o6%$o7
o5, o6, o7	{p,n}

I

02 |x :o′
1
, r : i1 |ε

o′
1
:L1(?) o′

1
	{p,n} i1: [>0]

B′

09 |x :o′
4
, r : i1 |o

′
4
, null

o′
4
:L1(?) o′

4
	{p,n}

F ′

04 |x :o′
1
, r : i1 |o

′
1
, null

o′
1
:L1(?) o′

1
	{p,n} i1: [>0]

C′

02 |x :o′
5
, r : i2 |ε

o′
5
:L1(p=o′

6
, n=o′

7
)

o′
6
:L1(?) o′

7
:L1(?) i2: [>1]

o′
5
%$o′

6
o′
5
%$o′

7
o′
6
%$o′

7

o′
5
, o′

6
, o′

7
	{p,n}

I′

i2 = i1 + 1

Fig. 4. Termination Graph for length

In B, we load null and the value of x (i.e., o1) on the operand stack, result-
ing in C. In C, the result of getfield depends on the value of o1. Hence, we
perform a case analysis (a so-called instance refinement) to distinguish between
the possible types of o1 (and the case where o1 is null). So we obtain D where
o1 is null, and E where o1 points to an actual object of type L1. To get single
static assignments, we rename o1 to o2 in E and create fresh references o3 and
o4 for its fields p and n. We connect D and E by dashed refinement edges to C.

In E, our annotations have to be updated. If o1 can reach a cycle, then this
could also hold for its successors. Thus, we copy 	{p,n} to the newly-created
successors o3 and o4. Moreover, if o2 (o1 under its new name) can reach itself,
then its successors might also reach o2 and they might also reach each other.
Thus, we create %$ annotations indicating that each of these references may
share with any of the others. We do not have to create any equality annotations.
The annotation o2 =? o3 (and o2 =? o4) is not needed because if the two were
equal, they would form a cycle involving only one field, which contradicts	{p,n}.

Furthermore, we do not need o3 =? o4, as o1 was not marked with ♦.

D ends the program (by an exception), indicated by an empty box. In E, get-
field n replaces o2 on the operand stack by the value o4 of its field n, dup dupli-
cates the entry o4 on the stack, and astore 0 stores one of these entries in x,
resulting in F . We removed o2 and o3 which are no longer used in local variables
or the operand stack. To evaluate if acmpeq in F , we branch depending on the
equality of the two top references on the stack. So we need an instance refinement
and create G where o4 is null, and H where o4 refers to an actual object. The
annotations in H are constructed from F just as E was constructed from C.

G results in a program end. In H, r’s value is incremented to 2 and we jump
back to instruction 02, resulting in I. We could continue symbolic evaluation,
but this would not yield a finite termination graph. Whenever two states like
B and I are at the same program position, we use generalization (or widening
[13]) to find a common representative B′ of both B and I. By suitable heuristics,

7

our automation ensures that one always reaches a finite termination graph after
finitely many generalization steps [8]. The values for references in B′ include all
values that were possible in B or I. Since r had the value 1 in B and 2 in I, this
is generalized to the interval [>0] in B′. Similarly, since x was Unknown in B
but a non-null list in I, this is generalized to an Unknown value in B′.

We draw instance edges (depicted by thick arrows) from B and I to B′,
indicating that all concrete (i.e., non-abstract) program states represented by B
or I are also represented by B′. So B and I are instances of B′ (written B ⊑ B′,
I ⊑ B′) and any evaluation starting in B or I could start in B′ as well.

From B′ on, symbolic evaluation yields analogous states as when starting in
B. The only difference is that now, r’s value is an unknown positive integer. Thus,
we reach I ′, where r’s value i2 is the incremented value of i1 and the edge from
F ′ to I ′ is labeled with “i2 = i1 + 1” to indicate this relation. Such labels are
used in Sect. 2.3 when generating TRSs from termination graphs. The state I ′

is similar to I, and it is again represented by B′. Thus, we can draw an instance
edge from I ′ to B′ to “close” the graph, leaving only program ends as leaves.

A sequence of concrete states c1, c2, . . . is a computation path if ci+1 is ob-
tained from ci by standard JBC evaluation. A computation sequence is represen-
ted by a termination graph if there is a path s11, . . . , s

k1

1 , s12, . . . , s
k2

2 , . . . of states
in the termination graph such that ci ⊑ s1i , . . . , ci ⊑ ski

i for all i and such that
all labels on the edges of the path (e.g., “i2 = i1 +1”) are satisfied by the corre-
sponding values in the concrete states. Thm. 1 shows that if a concrete state c1
is an instance of some state s1 in the termination graph, then every computation
path starting in c1 is represented by the termination graph. Thus, every infinite
computation path starting in c1 corresponds to a cycle in the termination graph.

Theorem 1 (Soundness of Termination Graphs). Let G be a termination
graph, s1 some state in G, and c1 some concrete state with c1 ⊑ s1. Then any
computation sequence c1, c2, . . . is represented by G.

2.3 Proving Termination via Term Rewriting

From the termination graph, one can generate a TRS with built-in integers [17]
that only terminates if the original program terminates. To this end, in [25] we
showed how to encode each state of a termination graph as a term and each edge
as a rewrite rule. We now extend this encoding to the new annotations ♦ and 	
in such a way that one can prove termination of algorithms like length.

To encode states, we convert the values of local variables and operand stack
entries to terms. References with unknown value are converted to variables of
the same name. So the reference i1 in state B′ is converted to the variable i1.

The null reference is converted to the constant null and for objects, we use
the name of their class as a function symbol. The arguments of that function
correspond to the fields of the class. So a list x of type L1 where x.p and x.n are
null would be converted to the term L1(null, null) and o2 from state E would be
converted to the term L1(o3, o4) if it were not possibly cyclic.

In [25], we had to exclude objects that were not tree-shaped from this transla-
tion. Instead, accesses to such objects always yielded a fresh, unknown variable.

8

To handle objects annotated with ♦, we now use a simple unrolling when trans-
forming them to terms. Whenever a reference is changed in the termination
graph, then all its occurrences in the unrolled term are changed simultaneously
in the corresponding TRS. To handle the annotation	FI , now we only encode a
subset of the fields of each class when transforming objects to terms. This subset
is chosen such that at least one field of FI is disregarded in the term encoding.5

Hence, when only regarding the encoded fields, the data objects are acyclic and
can be represented as terms. To determine which fields to drop from the encod-
ing, we use a heuristic which tries to disregard fields without read access.

In our example, all cyclicity annotations have the form 	{p,n} and p is never
read. Hence, we only consider the field n when encoding L1-objects to terms.
Thus, o2 from state E would be encoded as L1(o4). Now any read access to p

would have to be encoded as returning a fresh variable.
For every state we use a function with one argument for each local variable

and each entry of the operand stack. So E is converted to fE(L1(o4), 1, L1(o4), null).
To encode the edges of the termination graph as rules, we consider the dif-

ferent kinds of edges. For a chain of evaluation edges, we obtain a rule whose
left-hand side is the term resulting from the first state and whose right-hand
side results from the last state of the chain. So the edges from E to F result in

fE(L1(o4), 1, L1(o4), null)→ fF (o4, 1, o4, null).

In term rewriting [3], a rule ℓ → r can be applied to a term t if there is a
substitution σ with ℓσ = t′ for some subterm t′ of t. The application of the
rule results in a variant of t where t′ is replaced by rσ. For example, consider a
concrete state where x is a list of length 2 and the program counter is 04. This
state would be an instance of the abstract state E and it would be encoded by the
term fE(L1(L1(null)), 1, L1(L1(null)), null). Now applying the rewrite rule above
yields fF (L1(null), 1, L1(null), null). In this rule, we can see the main termination
argument: Between E and F , one list element is “removed” and the list has
finite length (when only regarding the n field). A similar rule is created for the
evaluations that lead to state F ′, where all occurrences of 1 are replaced by i1.

In our old approach [25], the edges from E to F would result in fE(L1(o4), 1,
L1(o4), null)→ fF (o

′
4, 1, o

′
4, null). Its right-hand side uses the fresh variable o′4 in-

stead of o4, since this was the only way to represent cyclic objects in [25]. Since o′4
could be instantiated by any term during rewriting, this TRS is not terminating.

For refinement edges, we use the term for the target state on both sides of the
resulting rule. However, on the left-hand side, we label the outermost function
symbol with the source state. So for the edge from F to H, we have the term
for H on both sides of the rule, but on the left-hand side we replace fH by fF :

fF (L1(o7), 1, L1(o7), null)→ fH(L1(o7), 1, L1(o7), null)

For instance edges, we use the term for the source state on both sides of the
resulting rule. However, on the right-hand side, we label the outermost function
with the target state instead. So for the edge from I to B′, we have the term for

5 Of course, if FI = ∅, then we still handle cyclic objects as before and represent any
access to them by a fresh variable.

9

I on both sides of the rule, but on the right-hand side we replace fI by fB′ :

fI(L1(o7), 2)→ fB′(L1(o7), 2)

For termination, it suffices to convert just the (non-trivial) SCCs of the termi-
nation graph to TRSs. If we do this for the only SCC B′, . . . , I ′, . . . , B′ of our
graph, and then “merge” rewrite rules that can only be applied after each other
[25], then we obtain one rule encoding the only possible way through the loop:

fB′(L1(L1(o7)), i1)→ fB′(L1(o7), i1 + 1)

Here, we used the information on the edges from F ′ to I ′ to replace i2 by i1+1.
Termination of this rule is easily shown automatically by termination provers like
AProVE, although the original Java program worked on cyclic objects. However,
our approach automatically detects that the objects are not cyclic anymore if
one uses a suitable projection that only regards certain fields of the objects.

Theorem 2 (Proving Termination of Java by TRSs). If the TRSs result-
ing from the SCCs of a termination graph G are terminating, then G does not
represent any infinite computation sequence. So by Thm. 1, the original JBC pro-
gram is terminating for all concrete states c where c ⊑ s for some state s in G.

3 Handling Marking Algorithms on Cyclic Data
public class L2 {

int v;

L2 n;

static void visit(L2 x){

int e = x.v;

while (x.v == e) {

x.v = e + 1;

x = x.n; }}}

Fig. 5. Java Program

00: aload_0 #load x

01: getfield v #get v from x

04: istore_1 #store to e

05: aload_0 #load x

06: getfield v #get v from x

09: iload_1 #load e

10: if_icmpne 28 #jump if x.v != e

13: aload_0 #load x

14: iload_1 #load e

15: iconst_1 #load 1

16: iadd #add e and 1

17: putfield v #store to x.v

20: aload_0 #load x

21: getfield n #get n from x

24: astore_0 #store to x

25: goto 5

28: return

Fig. 6. JBC for visit

We now regard lists with a “next”
field n where every element has
an integer value v. The method
visit stores the value of the first
list element. Then it iterates over
the list elements as long as they
have the same value and “marks”
them by modifying their value. If
all list elements had the same value initially, then the iteration either ends with
a NullPointerException (if the list is non-cyclic) or because some element is
visited for the second time (this is detected by its modified “marked” value).6 We
illustrate the termination graph of visit in Sect. 3.1 and extend our approach
in order to prove termination of such marking algorithms in Sect. 3.2.

6 While termination of visit can also be shown by the technique of Sect. 4 which
detects whether an element is visited twice, the technique of Sect. 4 fails for analogous
marking algorithms on graphs which are easy to handle by the approach of Sect. 3,
cf. Sect. 5. So the techniques of Sect. 3 and 4 do not subsume each other.

10

05 |x :o1,e : i1 |ε
o1:L2(?) i1:Z o1	

A

06 |x :o1,e : i1 |o1
o1:L2(?) i1:Z o1	

B

06 |x :null,e : i1 |null
C

06 |x :o2,e : i1 |o2
o2:L2(v= i2, n=o3)
o3: L2(?) i1:Z i2:Z

o2,o3	 o2%$o3 o2=
?o3

D
06 |x :o2,e : i1 |o2
o2:L2(v= i2, n=o3)
o3: L2(?) i1:Z i2:Z
o2,o3	 o2%$o3

E

06 |x :o2,e : i1 |o2
o2:L2(v= i2, n=o2)
i1:Z i2:Z

F

10 |x :o2,e : i1 | i1, i2
o2:L2(v= i2, n=o3) o2%$o3
o3:L2(?) i1:Z i2:Z o2,o3	

G

05 |x :o2,e : i1 |ε
o2:L2(v= i4, n=o2) i3:Z

K

10 |x :o2,e : i1 | i1, i2
o2: L2(v= i2, n= o3) o2%$o3
o3:L2(?) i1:Z i2:Z o2,o3	

H
10 |x :o2,e : i1 | i1, i1
o2:L2(v= i1, n=o3)
o3:L2(?) i1:Z
o2,o3	 o2%$o3

I

10 |x :o2,e : i1 | i1, i2
o2:L2(v= i2, n=o2)
i1:Z i2:Z

L

05 |x :o3,e : i1 |ε
o3:L2(?) i1:Z o3	

J

i1= i2
i4= i1+1

i1 6= i2

i1 6= i2i1=
i2

i3= i1+1

Fig. 7. Termination Graph for visit

3.1 Constructing the Termination Graph

When calling visit for an arbitrary (possibly cyclic) list, one reaches state A in
Fig. 7 after one loop iteration by symbolic evaluation and generalization. Now
aload 0 loads the value o1 of x on the operand stack, yielding state B.

To evaluate getfield v, we perform an instance refinement and create a
successor C where o1 is null and a successor D where o1 is an actual instance
of L2. As in Fig. 4, we copy the cyclicity annotation to o3 and allow o2 and o3 to
join. Furthermore, we add o2 =? o3, since o2 could be a cyclic one-element list.

In C, we end with a NullPointerException. Before accessing o2’s fields, we
have to resolve all possible equalities. We obtain E and F by an equality re-
finement, corresponding to the cases o2 6= o3 and o2 = o3. F needs no anno-
tations anymore, as all reachable objects are completely represented in the state.

In E we evaluate getfield, retrieving the value i2 of the field v. Then we load
e’s value i1 on the operand stack, which yields G. To evaluate if icmpne, we
branch depending on the inequality of the top stack entries i1 and i2, resulting
in H and I. We label the refinement edges with the respective integer relations.

In I, we add 1 to i1, creating i3, which is written into the field v of o2. Then,
the field n of o2 is retrieved, and the obtained reference o3 is written into x,
leading to J . As J is a renaming of A, we draw an instance edge from J to A.

The states following F are analogous, i.e., when reaching if icmpne, we
create successors depending on whether i1 = i2. In that case, we reach K, where
we have written the new value i4 = i1 + 1 into the field v of o2. Since K is also
an instance of A, this concludes the construction of the termination graph.

3.2 Proving Termination of Marking Algorithms

To prove termination of algorithms like visit, we try to find a suitable marking
property M ⊆ Refs×States. For every state s with heap h, we have (o, s) ∈M
if o is reachable7 in s and if h(o) is an object satisfying a certain property. We add

7 Here, a reference o is reachable in a state s if s has a local variable or an operand
stack entry o′ such that o′

π
→ o for some π ∈ FieldIDs

∗.

11

a local variable named cM to each state which counts the number of references in
M . More precisely, for each concrete state s with “cM : i” (i.e., the value of the
new variable is the reference i), h(i) ∈ Ints is the singleton set containing the
number of references o with (o, s) ∈ M . For any abstract state s with “cM : i”
that represents some concrete state s′ (i.e., s′ ⊑ s), the interval h(i) must contain
an upper bound for the number of references o with (o, s′) ∈M .

In our example, we consider the property L2.v = i1, i.e., cM counts the refer-
ences to L2-objects whose field v has value i1. As the loop in visit only continues
if there is such an object, we have cM > 0. Moreover, in each iteration, the field
v of some L2-object is set to a value i3 resp. i4 which is different from i1. Thus,
cM decreases. We now show how to find this termination proof automatically.

To detect a suitable marking property automatically, we restrict ourselves to
properties “Cl.f ⊲⊳ i”, where Cl is a class, f a field in Cl, i a (possibly unknown)
integer, and ⊲⊳ an integer relation. Then (o, s) ∈M iff h(o) is an object of type
Cl (or a subtype of Cl) whose field f stands in relation ⊲⊳ to the value i.

The first step is to find some integer reference i that is never changed in the
SCC. In our example, we can easily infer this for i1 automatically.8

The second step is to find Cl, f, and ⊲⊳ such that every cycle of the SCC
contains some state where cM > 0. We consider those states whose incoming
edge has a label “i ⊲⊳ . . .” or “. . . ⊲⊳ i”. In our example, I’s incoming edge is
labeled with “i1 = i2” and when comparing i1 and i2 in G, i2 was the value of
o2’s field v, where o2 is an L2-object. This suggests the marking property “L2.v
= i1”. Thus, cM now counts the references to L2-objects whose field v has the
value i1. So the cycle A, . . . , E, . . . A contains the state I with cM > 0 and one
can automatically detect that A, . . . , F, . . . , A has a similar state with cM > 0.

In the third step, we add cM as a new local variable to all states of the SCC.
For instance, in A to G, we add “cM : i” to the local variables and “i : [≥ 0]”
to the knowledge about the heap. The edge from G to I is labeled with “i > 0”
(this will be used in the resulting TRS), and in I we know “i : [> 0]”. It remains
to explain how to detect changes of cM . To this end, we use SMT solving.

A counter for “Cl.f ⊲⊳ i” can only change when a new object of type Cl (or
a subtype) is created or when the field Cl.f is modified. So whenever “new Cl”
(or “new Cl′” for some subtype Cl′) is called, we have to consider the default
value d for the field Cl.f. If the underlying SMT solver can prove that ¬d ⊲⊳ i
is a tautology, then cM can remain unchanged. Otherwise, to ensure that cM is
an upper bound for the number of objects in M , cM is incremented by 1.

If a putfield replaces the value u in Cl.f by w, we have three cases:

(i) If u ⊲⊳ i ∧ ¬w ⊲⊳ i is a tautology, then cM may be decremented by 1.
(ii) If u ⊲⊳ i↔ w ⊲⊳ i is a tautology, then cM remains the same.
(iii) In the remaining cases, we increment cM by 1.

In our example, between I and J one writes i3 to the field v of o2. To find
out how cM changes from I to J , we create a formula containing all information
on the edges in the path up to now (i.e., we collect this information by going

8 Due to our single static assignment syntax, this follows from the fact that at all
instance edges, i1 is matched to i1.

12

backwards until we reach a state like A with more than one predecessor). This
results in i1 = i2 ∧ i3 = i1 + 1. To detect whether we are in case (i) above,
we check whether the information in the path implies u ⊲⊳ i ∧ ¬w ⊲⊳ i. In our
example, the previous value u of o2.v is i1 and the new value w is i3. Any SMT
solver for integer arithmetic can easily prove that the resulting formula

i1 = i2 ∧ i3 = i1 + 1 → i1 = i1 ∧ ¬i3 = i1

is a tautology (i.e., its negation is unsatisfiable). Thus, cM is decremented by 1
in the step from I to J . Since in I, we had “cM : i” with “i : [> 0]”, in J we have
“cM : i′” with “i′ : [≥ 0]”. Moreover, we label the edge from I to J with the
relation “i′ = i− 1” which is used when generating a TRS from the termination
graph. Similarly, one can also easily prove that cM decreases between F and K.
Thm. 3 shows that Thm. 1 still holds when states are extended by counters cM .

Theorem 3 (Soundness of Termination Graphs with Counters for
Marking Properties). Let G be a termination graph, s1 some state in G,
c1 some concrete state with c1 ⊑ s1, and M some marking property. If we ex-
tend all concrete states c with heap h by an extra local variable “cM : i” such
that h(i) = {|{(o, c) ∈M}|} and if we extend abstract states as described above,
then any computation sequence c1, c2, . . . is represented by G.

We generate TRSs from the termination graph as before. So by Thm. 2 and
3, termination of the TRSs still implies termination of the original Java program.

Since the new counter is an extra local variable, it results in an extra argu-
ment of the functions in the TRS. So for the cycle A, . . . , E, . . . A, after some
“merging” of rules, we obtain the following TRS. Here, the first rule may only
be applied under the condition i > 0. For A, . . . , F, . . . A we obtain similar rules.

fA(. . . , i, . . .)→ fI(. . . , i, . . .) | i > 0 fI(. . . , i, . . .)→ fJ(. . . , i− 1, . . .)
fJ(. . . , i

′, . . .)→ fA(. . . , i
′, . . .)

Termination of the resulting TRS can easily be be shown automatically by stan-
dard tools from term rewriting, which proves termination of the method visit.

4 Handling Algorithms with Definite Cyclicity

public class L3 {

L3 n;

void iterate () {

L3 x = this.n;

while (x != this)

x = x.n; }}

Fig. 8. Java Program

00: aload_0 #load this

01: getfield n #get n from this

04: astore_1 #store to x

05: aload_1 #load x

06: aload_0 #load this

07: if_acmpeq 18 #jump if x == this

10: aload_1 #load x

11: getfield n #get n from x

14: astore_1 #store x

15: goto 05

18: return
Fig. 9. JBC for iterate

The method in Fig. 8 traver-
ses a cyclic list until it reaches
the start again. It only ter-
minates if by following the n

13

05 |t :o1,x :o2 |ε
o1:L3(n=o2) o2:L3(?)

o1,o2	 o1=
? o2

o1%$o2 o2
{n}
99K

! o1

A

07 |t :o1,x :o2 |o1, o2
o1:L3(n=o2) o2:L3(?)

o1,o2	 o1=
? o2

o1%$o2 o2
{n}
99K

! o1

B

07 |t :o1,x :o1 |o1, o1
o1:L3(n=o1)

C

07 |t :o1,x :o2 |o1, o2
o1:L3(n=o2) o2:L3(?)
o1,o2	

o1%$o2 o2
{n}
99K

! o1

D

11 |t :o1,x :o2 |o2
o1:L3(n=o2) o2:L3(?)
o1,o2	

o1%$o2 o2
{n}
99K

! o1

E

11 |t :o1,x :o3 |o3
o1:L3(n=o3)
o3:L3(n=o4) o4:L3(?)

o1,o3,o4	 o4=
? o1

o1%$o4 o4%$o3 o4
{n}
99K

! o1

F

05 |t :o1,x :o4 |ε
o1:L3(n=o3)
o3:L3(n=o4) o4:L3(?)

o1,o3,o4	 o4=
? o1

o1%$o4 o4%$o3 o4
{n}
99K

! o1

G

05 |t :o1,x :o4 |ε
o1:L3(?) o4:L3(?)

o1,o4	 o4=
? o1

o1%$o4 o1
{n}
99K

! o4

o4
{n}
99K

! o1

H

07 |t :o1,x :o4 |o1, o4
o1:L3(?) o4:L3(?)

o1,o4	 o4=
? o1

o1%$o4 o1
{n}
99K

! o4 o4
{n}
99K

! o1

I

07 |t :o1,x :o4 |o1, o4
o1:L3(?) o4:L3(?)
o1,o4	

o1%$o4 o1
{n}
99K

! o4 o4
{n}
99K

! o1

J

11 |t :o1,x :o4 |o4
o1:L3(?) o4:L3(?)
o1,o4	

o1%$o4 o1
{n}
99K

! o4 o4
{n}
99K

! o1

K

11 |t :o1,x :o5 |o5
o1:L3(?) o5:L3(n=o6)
o6:L3(?) o1,o5,o6	

o6=
? o1 o1%$o5 o6%$o1

o1
{n}
99K

! o5 o6
{n}
99K

! o1

L

Fig. 10. Termination Graph for iterate

field, we reach null or the first element again. We illustrate iterate’s termina-
tion graph in Sect. 4.1 and introduce a new definite reachability annotation for
such algorithms. Afterwards, Sect. 4.2 shows how to prove their termination.

4.1 Constructing the Termination Graph

Fig. 10 shows the termination graph when calling iterate with an arbitrary
list whose first element is on a cycle.9 In contrast to marking algorithms like
visit in Sect. 3, iterate does not terminate for other forms of cyclic lists.
State A is reached after evaluating the first three instructions, where the value
o2 of this.n10 is copied to x. In A, o1 and o2 are the first elements of the list,
and o1 =? o2 allows that both are the same. Furthermore, both references are

possibly cyclic and by o1 %$ o2, o2 may eventually reach o1 again (i.e., o2
π
→ o1).

Moreover, we added a new annotation o2
{n}
99K! o1 to indicate that o2 definitely

reaches o1.
11 All previous annotations =?, %$, ♦,	 extend the set of concrete

states represented by an abstract state (by allowing more sharing). In contrast,
a definite reachability annotation o

FI
99K! o′ with FI ⊆ FieldIDs restricts the set

of states represented by an abstract state. Now it only represents states where
o

π
→ o′ holds for some π ∈ FI ∗. To ensure that the FI -path from o to o′ is unique

(up to cycles), FI must be deterministic. This means that for any class Cl, FI
contains at most one of the fields of Cl or its superclasses. Moreover, we only
use o

FI
99K! o′ if h(o) ∈ Unknown for the heap h of the state.

In A, we load the values o2 and o1 of x and this on the stack. To evaluate
if acmpeq in B, we need an equality refinement w.r.t. o1 =? o2. We create C

9 The initial state of iterate’s termination graph is obtained automatically when
proving termination for a program where iterate is called with such lists, cf. Sect. 5.

10 In the graph, we have shortened this to t.
11 This annotation roughly corresponds to ls(o2, o1) in separation logic, cf. e.g. [4, 5].

14

for the case where o1 = o2 (which ends the program) and D for o1 6= o2.
In D, we load x’s value o2 on the stack again. To access its field n in E, we

need an instance refinement for o2. By o2
{n}
99K! o1, o2’s value is not null. So there

is only one successor F where we replace o2 by o3, pointing to an L3-object. The
annotation o2

{n}
99K! o1 is moved to the value of the field n, yielding o4

{n}
99K! o1.

In F , the value o4 of o3’s field n is loaded on the stack and written to x. Then
we jump back to instruction 05. As G and A are at the same program position,
they are generalized to a new state H which represents both G and A. H also
illustrates how definite reachability annotations are generated automatically: In
A, this reaches x in one step, i.e., o1

n
→ o2. Similarly in G, this reaches x in

two steps, i.e., o1
n n
→ o4. To generalize this connection between this and x in

the new state H where “this : o1” and “x : o4”, one generates the annotation
o1
{n}
99K! o4 in H. Thus, this definitely reaches x in arbitrary many steps.
From H, symbolic evaluation continues just as from A. So we reach the states

I, J,K,L (corresponding to B,D,E, F , respectively). In L, the value o6 of x.n
is written to x and we jump back to instruction 05. There, o5 is not referenced
anymore. However, we had o1

{n}
99K! o5 in state L. When garbage collecting o5,

we “transfer” this annotation to its n-successor o6, generating o1
{n}
99K! o6. Now

the resulting state is just a variable renaming of H, and thus, we can draw an
instance edge to H. This finishes the graph construction for iterate.

4.2 Proving Termination of Algorithms with Definite Reachability

The method iterate terminates since the sublist between x and this is short-
ened in every loop iteration. To extract this argument automatically, we proceed
similar to Sect. 3, i.e., we extend the states by suitable counters. More precisely,
any state that contains a definite reachability annotation o FI

99K! o′ is extended
by a counter c

o
FI

99K
!o′

representing the length of the FI -path from o to o′.

So H is extended by two counters c
o1
{n}
99K

!o4
and c

o4
{n}
99K

!o1
. Information about

their value can only be inferred when we perform a refinement or when we
transfer an annotation o FI

99K! o′ to some successor ô of o′ (yielding o FI
99K! ô).

If a state s contains both o FI
99K! o′ and o =? o′, then an equality refinement

according to o =? o′ yields two successor states. In one of them, o and o′ are
identified and o

FI
99K! o′ is removed. In the other successor state s′ (for o 6= o′),

any path from o to o′ must have at least length one. Hence, if “c
o

FI

99K
!o′

: i” in s

and s′, then the edge from s to s′ can be labeled by “i > 0”. So in our example,
if “c

o4
{n}
99K

!o1
: i” in I and J , then we can add “i > 0” to the edge from I to J .

Moreover, if s contains o FI
99K! o′ and one performs an instance refinement on

o, then in each successor state s′ of s, the annotation o
FI
99K! o′ is replaced by

ô
FI
99K! o′ for the reference ô with o.f = ô where f ∈ FI . Instead of “c

o
FI

99K
!o′

: i”

in s we now have a counter “c
ô

FI

99K
!o′

: i′” in s′. Since FI is deterministic, the

FI -path from ô to o′ is one step shorter than the FI -path from o to o′. Thus,
the edge from s to s′ is labeled by “i′ = i− 1”. So if we have “c

o4
FI

99K
!o1

: i” in K

and “c
o6

FI

99K
!o1

: i′” in L, then we add “i′ = i− 1” to the edge from K to L.

15

When a reference o′ has become unneeded in a state s′ reached by evaluation
from s, then we transfer annotations of the form o FI

99K! o′ to all successors ô of

o′ with o′
f
→ ô where FI ′ = {f} ∪ FI is still deterministic. This results in a new

annotation o
FI
′

99K! ô in s′. For “c
o
FI
′

99K
!ô
: i′” in s′, we know that its value is exactly

one more than “c
o

FI

99K
!o
: i” in s and hence, we label the edge by “i′ = i+ 1”. In

our example, this happens between L and H. Here the annotation o1
{n}
99K! o5 is

transferred to o5’s successor o6 when o5 is garbage collected, yielding o1
{n}
99K! o6.

Thm. 4 adapts Thm. 1 to definite reachability annotations.

Theorem 4 (Soundness of Termination Graphs with Definite Reacha-
bility). Let G be a termination graph with definite reachability annotations, s1 a
state in G, and c1 a concrete state with c1 ⊑ s1. As in Thm. 1, any computation
sequence c1, c2, . . . is represented by a path s11, . . . , s

k1

1 , s12, . . . , s
k2

2 , . . . in G.
Let G′ result from G by extending the states by counters for their definite

reachability annotations as above. Moreover, each concrete state cj in the compu-
tation sequence is extended to a concrete state c′j by adding counters “c

o
FI

99K
!o′

: i”

for all annotations “o
FI
99K! o′” in s1j , . . . , s

kj

j . Here, the heap of c′j maps i to the
singleton interval containing the length of the FI -path between the references cor-
responding to o and o′ in c′j. Then the computation sequence c′1, c

′
2, . . . of these

extended concrete states is represented by the termination graph G′.

The generation of TRSs from the termination graph works as before. Hence
by Thm. 2 and 4, termination of the resulting TRSs implies that there is no
infinite computation sequence c′1, c

′
2, . . . of extended concrete states and thus,

also no infinite computation sequence c1, c2, . . . Hence, the Java program is ter-
minating. Moreover, Thm. 4 can also be combined with Thm. 3, i.e., the states
may also contain counters for marking properties as in Thm. 3.

As in Sect. 3, the new counters result in extra arguments12 of the function
symbols in the TRS. In our example, we obtain the following TRS from the only
SCC I, . . . , L, . . . , I (after “merging” some rules). Termination of this TRS is
easy to prove automatically, which implies termination of iterate.

fI(. . . , i, . . .)→ fK(. . . , i, . . .) | i > 0 fK(. . . , i, . . .)→ fL(. . . , i− 1, . . .)
fL(. . . , i

′, . . .)→ fI(. . . , i
′, . . .)

5 Experiments and Conclusion

We extended our earlier work [6–8, 25] on termination of Java to handle methods
whose termination depends on cyclic data. We implemented our contributions
in the tool AProVE [18] (using the SMT Solver Z3 [14]) and evaluated it on a
collection of 387 JBC programs. It consists of all13 268 Java programs of the
Termination Problem Data Base (used in the International Termination Com-
petition); the examples length, visit, iterate from this paper;14 a variant of

12 For reasons of space, we only depicted the argument for the counter o4
{n}
99K

! o1.
13 We removed one controversial example whose termination depends on overflows.

16

visit on graphs;15 3 well-known challenge problems from [9]; 57 (non-termina-
ting) examples from [8]; and all 60 methods of java.util.LinkedList and
java.util.HashMap from Oracle’s standard Java distribution.16 Apart from list
algorithms, the collection also contains many programs on integers, arrays, trees,
or graphs. Below, we compare the new version of AProVE with AProVE ’11 (im-
plementing [6–8, 25], i.e., without support for cyclic data), and with the other
available termination tools for Java, viz. Julia [30] and COSTA [2]. As in the
Termination Competition, we allowed a runtime of 60 seconds for each example.
Since the tools are tuned to succeed quickly, the results hardly change when in-

Y N F T R

AProVE 267 81 11 28 9.5
AProVE ’11 225 81 45 36 11.4
Julia 191 22 174 0 4.7
COSTA 160 0 181 46 11.0

creasing the time-out. “Yes” resp. “No” states
how often termination was proved resp. dis-
proved, “Fail” indicates failure in less than 60
seconds, “T” states how many examples led to a
Time-out, and “R” gives the average Runtime
in seconds for each example.

Our experiments show that AProVE is substantially more powerful than all
other tools. In particular, AProVE succeeds for all problems of [9]17 and for 85 %
of the examples from LinkedList and HashMap. There, AProVE 2011, Julia, resp.
COSTA can only handle 38 %, 53 %, resp. 48 %. See [1] to access AProVE via a
web interface, for the examples and details on the experiments, and for [6–8, 25].

Acknowledgements.We thank F. Spoto and S. Genaim for help with the experiments

and A. Rybalchenko and the anonymous referees for helpful comments.

References

1. http://aprove.informatik.rwth-aachen.de/eval/JBC-Cyclic/.
2. E. Albert, P. Arenas, M. Codish, S. Genaim, G. Puebla, D. Zanardini. Termination

analysis of Java Bytecode. In Proc. FMOODS ’08, LNCS 5051, pages 2–18, 2008.
3. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge, 1998.
4. J. Berdine, B. Cook, D. Distefano, P. O’Hearn. Automatic termination proofs for

programs with shape-shifting heaps. Proc. CAV ’06, LNCS 4144, p. 386-400, 2006.
5. J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’Hearn, T. Wies, H. Yang.

Shape analysis for composite data structures. CAV ’07, LNCS 4590, 178–192, 2007.
6. M. Brockschmidt, C. Otto, C. von Essen, J. Giesl. Termination graphs for JBC.

In Verification, Induction, Termination Analysis, LNCS 6463, pages 17–37, 2010.
7. M. Brockschmidt, C. Otto, J. Giesl. Modular termination proofs of recursive JBC

programs by term rewriting. In Proc. RTA ’11, LIPIcs 10, pages 155–170, 2011.
8. M. Brockschmidt, T. Ströder, C. Otto, J. Giesl. Automated detection of non-ter-

mination and NullPointerExceptions for JBC. Proc. FoVeOOS ’11, LNCS, 2012.

14 Our approach automatically infers with which input length, visit, and iterate

are called, i.e., we automatically obtain the termination graphs in Fig. 4, 7, and 10.
15 Here, the technique of Sect. 3 succeeds and the one of Sect. 4 fails, cf. Footnote 6.
16 Following the regulations in the Termination Competition, we excluded 7 methods

from LinkedList and HashMap, as they use native methods or string manipulation.
17 We are not aware of any other tool that proves termination of the algorithm for

in-place reversal of pan-handle lists from [9] fully automatically.

17

9. J. Brotherston, R. Bornat, and C. Calcagno. Cyclic proofs of program termination
in separation logic. In Proc. POPL ’08, pages 101–112. ACM Press, 2008.

10. R. Cherini, L. Rearte, and J. Blanco. A shape analysis for non-linear data struc-
tures. In Proc. SAS’10, LNCS 6337, pages 201–217, 2010.

11. M. Colón and H. Sipma. Practical methods for proving program termination. In
Proc. CAV ’02, LNCS 2404, pages 442–454, 2002.

12. B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems code.
In Proc. PLDI ’06, pages 415–426. ACM Press, 2006.

13. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proc.

POPL ’77, pages 238–252. ACM Press, 1977.
14. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Proc. TACAS ’08,

LNCS 4963, pages 337–340, 2008.
15. N. Dershowitz. Termination of rewriting. J. Symb. Comp., 3(1-2):69–116, 1987.
16. S. Falke, D. Kapur, and C. Sinz. Termination analysis of C programs using compiler

intermediate languages. In Proc. RTA ’11, LIPIcs 10, pages 41–50, 2011.
17. C. Fuhs, J. Giesl, M. Plücker, P. Schneider-Kamp, S. Falke. Proving termination

of integer term rewriting. In Proc. RTA ’09, LNCS 5595, pages 32–47, 2009.
18. J. Giesl, P. Schneider-Kamp, R. Thiemann. AProVE 1.2: Automatic termination

proofs in the DP framework. In Proc. IJCAR’06, LNAI 4130, pages 281–286, 2006.
19. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and im-

proving dependency pairs. Journal of Automated Reasoning, 37(3):155–203, 2006.
20. J. Giesl, M. Raffelsieper, P. Schneider-Kamp, S. Swiderski, R. Thiemann. Automa-

ted termination proofs for Haskell by term rewriting. ACM TOPLAS, 33(2), 2011.
21. G. Klein and T. Nipkow. A machine-checked model for a Java-like language, virtual

machine and compiler. ACM TOPLAS, 28(4):619–695, 2006.
22. D. Kroening, N. Sharygina, A. Tsitovich, C. M. Wintersteiger. Termination analy-

sis with compositional transition invariants. CAV ’10, LNCS 6174, 89-103, 2010.
23. C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for

program termination. In Proc. POPL ’01, pages 81–92. ACM Press, 2001.
24. S. Magill, M.-H. Tsai, P. Lee, Y.-K. Tsay. Automatic numeric abstractions for

heap-manipulating programs. Proc. POPL ’10, pages 81-92. ACM Press, 2010.
25. C. Otto, M. Brockschmidt, C. von Essen, J. Giesl. Automated termination analysis

of JBC by term rewriting. In Proc. RTA ’10, LIPIcs 6, pages 259–276, 2010.
26. A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear

ranking functions. In Proc. VMCAI ’04, LNCS 2937, pages 465–486, 2004.
27. A. Podelski and A. Rybalchenko. Transition invariants. LICS ’04, p. 32-41, 2004.
28. A. Podelski, A. Rybalchenko, and T. Wies. Heap assumptions on demand. In Proc.

CAV ’08, LNCS 5123, pages 314–327, 2008.
29. P. Schneider-Kamp, J. Giesl, T. Ströder, A. Serebrenik, R. Thiemann. Automated

termination analysis for logic programs with cut. TPLP, 10(4-6):365–381, 2010.
30. F. Spoto, F. Mesnard, and É. Payet. A termination analyser for Java Bytecode

based on path-length. ACM TOPLAS, 32(3), 2010.
31. A. Tsitovich, N. Sharygina, C. M. Wintersteiger, D. Kroening. Loop summarization

and termination analysis. In Proc. TACAS ’11, LNCS 6605, pages 81–95, 2011.
32. H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’Hearn.

Scalable shape analysis for systems code. CAV ’08, LNCS 5123, 385-398. 2008.
33. H. Zantema. Termination. In Terese, editor, Term Rewriting Systems, pages 181–

259. Cambridge University Press, 2003.

18

Appendix A, presents additional details on the automated generation of termi-
nation graphs. Appendix B concerns the proofs for the theorems of the paper.

Appendix A. Details on Generating Termination Graphs

As mentioned, if an algorithm calls a method like length, visit, or iterate,
then our approach automatically infers the potential forms of their input ar-
guments. We demonstrate this in Sect. A1, where we present an algorithm for
generating an arbitrary cyclic list. This list could then be used as an input to
a method like length, visit, or iterate. In Sect. A2, we add missing details
needed for the construction of termination graphs. More precisely, we formally
define when a state is an instance of another state, we present an algorithm for
generalizing two states to a common representative, and we give the procedure
for the automated construction of annotations when building the termination
graph. We recapitulate these details from our earlier papers and show how to
extend them to our new annotations.18

A.1 Creating Arbitrary Cyclic Lists

static L3 createL(int s){

L3 x = new L3();

L3 e = x;

while (--s >= 0) {

L3 y = new L3();

y.n = x;

x = y; }

e.n = x;

return x; }

Fig. 11. Java Method

00: new L3 #create new L3 -obj.

03: dup #dup. ref. to obj.

04: invokespecial <init > #constr.

07: astore_1 #store ref. in x

08: aload_1 #load ref. from x

09: astore_2 #store ref. in e

10: iinc 0, -1 #decrement s by 1

13: iload_0 #load int from s

14: iflt 35 #go to 35 if < 0

17: new L3 #create new L3 -obj.

20: dup #dup. ref. to obj.

21: invokespecial <init > #constr.

24: astore_3 #store ref. in y

25: aload_3 #load from y

26: aload_1 #load from x

27: putfield n #put x in field n

30: aload_3 #load from y

31: astore_1 #store in x

32: goto 10

35: aload_2 #load e

36: aload_1 #load x

37: putfield n #put x in field n

40: aload_1 #load x

41: areturn #return x

Fig. 12. JBC for createL

Consider a program whose
main method calls a method
like length, visit, or iterate
with an arbitrary cyclic list.
This main method would first
construct an arbitrary cyclic
list, e.g., by calling the above
method createL with an arbi-
trary integer number s. Then
length, visit, resp. iterate
would be called with the list
generated by createL. We now
show how our approach auto-
matically detects that an algo-

18 In the following, we only consider the annotations ♦ and	. A corresponding exten-
sion to the annotation 99K! is analogous and will be discussed in Appendix B.

19

rithm like createL generates an arbitrary cyclic list (i.e., we show how to infer
the corresponding annotations that are then used in the initial states of the
termination graphs of length, visit, resp. iterate).

Fig. 11 displays the method createL(int s) which constructs a cyclic list
of length s. The corresponding bytecode is shown in Fig. 12. The method works
by first constructing an acyclic list of length s starting in x and ending in e. It
then connects e to x, closing the cycle.

In contrast to the other methods presented in the paper, this method uses a
constructor and hence, it has (special) method calls. In JBC, object construction
is handled by three instructions. First, a new object is created using the new

instruction. This instruction allocates space on the heap for the new object,
initializes all its fields to their respective default values (0 for fields of a numeric
type and null for fields of a reference type), and returns a reference to this
newly created object. Then, the returned reference is duplicated on the operand
stack using the dup instruction. Finally, invokespecial is called to invoke the
actual constructor method. In our example, that is the implicit standard Java

no-op constructor. We will not handle method calls in detail here and refer to
[7] for further information.

To construct a termination graph, we start with an unknown argument s

and then apply our symbolic evaluation until reaching state A in Fig. 13 at the
start of the loop, in instruction 10. In A, a single list element has been created
and a reference to it has been stored in the local variables x and e. From A, we
can continue by decrementing the value of s by 1 and loading that new value on
the operand stack, reaching state B. The relation between the old value i1 of s
and its new value i2 is noted on the edge between A and B.

In B, we need to evaluate the iflt instruction, which branches depending
on whether the topmost operand stack entry is smaller than 0. Hence, we have
to perform a refinement, generating two new successors. We only consider the
successor C for the case that i2 is not smaller than 0 here. The other successor
is represented by the state H, which we will discuss later. From C on, we can
easily evaluate the whole loop body. A new L3-object is created and stored at
the reference o2. We then write the value o1 of x to the new object’s field n

and finally store o2 in x. The resulting state, again at program position 10, is
displayed as D.

As before, we notice that D is at the same program position as the earlier
state A. Hence, we generalize D and A to obtain a common representative for
the two states. We will explain how to do this in more detail now. Intuitively, we
want the references in the common representative to allow all values represented
by the corresponding references in the two original states.

A.2 Instances and Merging of States

To formalize the notion of “corresponding” references, we introduce state posi-
tions. Each local variable and each operand stack entry is at a certain position
in the state. For instance, lv0 is the position describing the first local variable
and os0 is the position of the first entry on the operand stack. We use these

20

10 |s : i1,x :o1,e :o1 |ε
o1:L3(n = null) i1:Z

A

14 |s : i2,x :o1,e :o1 | i2
o1:L3(n = null) i2:Z

B

. . .

14 |s : i4,x :o1,e :o1 | i4
o1:L3(n = null) i4: [≥0]

C

10 |s : i4,x :o2,e :o1 |ε
o2:L3(n = o1) i4: [≥0]
o1:L3(n = null)

D

10 |s : i5,x :o3,e :o1 |ε
o3:L3(?) i5:Z o1%$o3

o1:L3(n = null) o1 =? o3

E 14 |s : i6,x :o3,e :o1 | i6
o3:L3(?) i6:Z o1%$o3

o1:L3(n = null) o1 =? o3

F

10 |s : i8,x :o5,e :o1 | i8
o3:L3(?) i8: [≥0] o1%$o3

o1:L3(n = null) o1 =? o3
o5:L3(n = o3)

G
14 |s : i7,x :o3,e :o1 | i7
o3:L3(?) i7: [<0] o1%$o3

o1:L3(n = null) o1 =? o3

H

37 |x :o3,e :o1 |o3, o1
o3:L3(?) i7: [<0] o1%$o3

o1:L3(n = null) o1 =? o3

I

37 |x :o1,e :o1 |o1, o1
o1:L3(n = null) i7: [<0]

J
40 |x :o1,e :o1 |ε
o1:L3(n = o1) i7: [<0]

L

37 |x :o3,e :o1 |o3, o1
o3:L3(?) i7: [<0] o1%$o3
o1:L3(n = null)

K

40 |x :o3,e :o1 |ε
o3:L3(?) i7: [<0] o1%$o3
o1:L3(n = o3) o1, o3	{n}

M

i2= i1−1

i4≥0

i6=
i5−1

i8≥0 i7<0

Fig. 13. Termination Graph for createL

positions to “address” certain references in a state, and thus, for a state s with
position π, s|π is the reference in s at position π.

Definition 5 (State Positions SPos). Let s = (pp, lv, os, h, a) ∈ States.
Then SPos(s) is the smallest set containing all the following sequences π:

• π = lvi π
′, where π′ is a sequence of FieldIDs, lv = 〈o0, . . . , om〉, 0≤ i≤m,

and oi →
π′ r. Then s|π is r.

• π = osi π
′, where π′ is a sequence of FieldIDs, os = 〈o′0, . . . , o

′
k〉, 0≤ i≤k,

and o′i →
π′ r. Then s|π is r.

For any position π, let πs denote the maximal prefix of π such that πs ∈
SPos(s). We write π if s is clear from the context. We write τ < π if there is a
ρ 6= ε such that τρ = π.

For example, A|lv0
is i1, D|lv0

= i4, and D|lv1 n is o1. The position lv1 n

does not exist in A, but lv1 nA is lv1. Using this, we can now formally describe
the differences between the states A and D. Only the values for the references at
A|lv2

andD|lv2
are the same, while at all other positions, we have different values.

Furthermore, we have different aliasing effects: while in A, we have A|lv2
= A|lv1

,
we have D|lv2

= D|lv1 n 6= D|lv1
.

Intuitively, a state s′ is represented by s (“s′ is an instance of s”, or s′ ⊑ s)
if the two states are at the same program position and for all references s′|π,
there is either a π ∈ SPos(s) such that the value in the heap of s′ for s′|π is
represented by the value in the heap of s for s|π or there is no position π in
s. This representation of values is considered in points (a)-(d) in the following
definition.

Of course, shared parts of the heap in s′ must also be allowed to share in
s. For example, if two positions π, π′ lead to the same reference in s′ and these
positions exist in s, they either have to point to the same reference again or
we need the annotation s|π =? s|π′ allowing the two references to be the same.

21

If one of π, π′ is not existing anymore in s, then we need to have suitable %$

annotations in s. These conditions are formalized in (e)-(h) in the definition.
The last part of the definition concerns the shapes allowed on the heap. So

for example, if we have some reference o in s′ with o
τ
→ o (i.e, there is some cycle

involving o), then either that cycle must also exist in s or it must be allowed by
a 	FI annotation. Here, the required fields in F must all be occur in the cycle
τ . Similar conditions apply for the ♦ annotation, which leads to parts (i)− (l) of
the following definition. Thus, the following definition extends the corresponding
definition of “instance” from [6, 25] to the annotations	FI and ♦. For further
explanation and intuition, we refer to [6, 25].

Definition 6 (Instance). Let s′ = (pp, lv′, os′, h′, a′) and s = (pp, lv, os, h, a).
We call s′ an instance of s (denoted s′ ⊑ s) iff for all π, π′ ∈ SPos(s′):

(a) if h′(s′|π)∈Ints and π∈SPos(s), then h′(s′|π) ⊆ h(s|π)∈Ints.
(b) if h′(s′|π) = null and π ∈ SPos(s), then h(s|π) ∈ {null} ∪Unknown.
(c) if h′(s′|π) = (Cl′, ?) ∈ Unknown and π ∈ SPos(s), then

h(s|π) = (Cl, ?) ∈ Unknown and Cl′ is a subclass of Cl.
(d) if h′(s′|π) = (Cl′, e′) ∈ Instances and π ∈ SPos(s), then h(s|π) = (Cl, ?)

or h(s|π) = (Cl′, e) ∈ Instances, where Cl′ must be a subclass of Cl.
(e) if s′|π 6= s′|π′ and π, π′ ∈ SPos(s), then s|π 6= s|π′ .
(f) if s′|π =? s′|π′ and π, π′ ∈ SPos(s), then s|π =? s|π′ .
(g) if s′|π = s′|π′ or s′|π =? s′|π′ where h′(s′|π) 6∈ Ints∪{null} then

π, π′ ∈ SPos(s) and s|π = s|π′ or s|π =? s|π′

or π, π′ 6∈ SPos(s) and (s|π %$ s|π′ or π = π′ and (s|π♦ or s|π	FI)).

(h) if s′|π %$ s′|π′ , then (s|π %$ s|π′ or π = π′ and (s|π♦ or s|π	FI)).
(i) if there is a τ 6= ε with s′|π = s′|πτ , h

′(s′|π) 6∈ Ints∪{null} then
π, πτ ∈ SPos(s) and s|π = s|πτ

or s|π	FI with FI ⊆ τ , (i.e., FI only contains fields occurring in the position τ).
(j) if there are τ 6= ε 6= τ ′ with no common prefix, s′|πτ = s′|πτ ′ and for all

ρ < ρ̄ ≤ τ we have s|πρ 6= s|πρ̄ and for all ρ′ < ρ̄′ ≤ τ ′ we have s|πρ′ 6= s|πρ̄′
and h′(s′|πτ) 6∈ Ints∪{null}, then

πτ, πτ ′ ∈ SPos(s) and s|πτ = s|πτ ′
or s|π♦.

(k) if s′|π	L′ , then s|π	FI and FI ⊆ FI ′.
(l) if s′|π♦, then s|π♦.

From this definition, we can easily derive an algorithm mergeStates that
takes two states s, s′ and returns a new state ŝ such that s, s′ ⊑ ŝ (first presented

in [8]). The algorithm is displayed in Fig. 14, where h, h′, and ĥ correspond to the
heaps of s, s′, and ŝ, respectively. The constructor new State(s) creates a new
state at the same program position as s. The auxiliary function mergeRef is an
injective mapping from pairs of references to a fresh reference name. The function
mergeVal maps a pair of values to the most precise common representative,
according to (a)− (d) from Def. 6. For example, mergeVal([2, 3], [8, 42]) results
in [2, 42], covering both input values, but also the values [4, 7], which were not
represented until now. For values from Instances of the same type, mergeVal

22

Algorithm mergeStates(s, s′):
ŝ = new State(s)
for π ∈ SPos(s) ∩ SPos(s′):

ref = mergeRef(s|π, s
′|π)

ĥ(ref) = mergeVal(h(s|π), h
′(s′|π))

ŝ|π = ref

for π 6= π′ ∈ SPos(s):

if (s|π = s|π′ ∨ s|π =? s|π′) ∧ h(s|π) /∈ Ints∪{null}:
if π, π′ ∈ SPos(ŝ):

if ŝ|π 6= ŝ|π′:

if ĥ(ŝ|π) 6∈ Unknown∧ĥ(ŝ|π′) 6∈ Unknown:

Replace one of ĥ(ŝ|π), ĥ(ŝ|π′) by Unknown element, restart loop.

else: Set ŝ|π =? ŝ|π′

else: Set ŝ|π %$ ŝ|
π′

if s|π %$ s|π′ : Set ŝ|π %$ ŝ|
π′

for π ∈ SPos(s):
if ∃τ 6= ε : πτ ∈ SPos(s) ∧ s|π = s|πτ ∧ (πτ 6∈ SPos(ŝ) ∨ ŝ|π 6= ŝ|πτ)
∧h(s|π) /∈ Ints∪{null}:

Set s|π	FI where FI is τ interpreted as a set
if ∃τ 6= ε 6= τ ′ : τ, τ ′ have no common prefix ∧ πτ, πτ ′ ∈ SPos(s)
∧∀ρ < ρ̄ ≤ τ : s|πρ 6= s|πρ̄ ∧ ∀ρ′ < ρ̄′ ≤ τ : s|πρ′ 6= s|πρ̄′

∧s|πτ = s|πτ ′ ∧ ({πτ, πτ ′} 6⊆ SPos(ŝ) ∨ ŝ|πτ 6= ŝ|πτ ′) ∧ h(s|πτ) /∈ Ints∪{null}:
Set s|π♦

if s|π	FI : Set ŝ|π	FI

if s|π♦: Set ŝ|π♦
. . . same for SPos(s′) . . .
return ŝ

Fig. 14. Merging Algorithm

returns a fresh instance with field values obtained by merging the references
in the fields of the original instances. So for mergeVal(L3(n=null),L3(n=o1)),
we first choose a reference o4 as result of mergeRef(null,o1) and then obtain
L3(n=o4) as merged value. When merging other values, an element of Unknown

with the most precise common supertype is returned.

Sharing effects and shape representation are done in a second and third step,
where we basically consider each of the conditions from Def. 6 and add the
needed annotations. As we require that in o =? o′, either o or o′ is mapped to a
value from Unknown by the heap, we sometimes have to further abstract the
result state in the construction. As this additional abstraction may require more
annotations, the annotation construction is then restarted.

The correctness of our algorithm was proven in [8, Thm. 2]. The idea of
generating a common heap representation by “merging” two heap descriptions
has also been used in other approaches (e.g., [32] presented a similar algorithm
based on separation logic). However, the algorithm in [32] does not always suc-
ceed and needs to be adapted to structures more complex than lists, while our
construction is not specific to any data structure.

We can now apply the algorithm mergeStates to our two states A and D
from Fig. 13 to create a merged state E. The following table gives an overview

23

of the data needed for the first (“value-oriented”) part of the algorithm, where
hA (resp. hD) is the heap of A (resp. D):

Pos. π A|π D|π mergeRef hA(A|π) hD(D|π) mergeVal

lv0 i1 i4 i5 Z [≥ 0] Z

lv1 o1 o2 o3 L3(n=null) L3(n=o1) L3(n=o4)
lv2 o1 o1 o1 L3(n=null) L3(n=null) L3(n=null)

lv1 n null o1 o4 null L3(n=null) L3(?)

lv2 n null null null null null null

For the next part (which creates the needed annotations to represent sharing
effects and non-tree shapes), we need to look at all pairs of positions referring to
the same references or to references which might be equal or join. In our case,
we have A|lv1

= A|lv2
, but in the resulting state E, E|lv1

= o3 6= o1 = E|lv2
.

Hence, we have to add o1 =? o3 to E. But this is not allowed, as both references
point to values from Instances. Therefore, we have to abstract away one of the
two values. We choose to replace the value of o3 by L3(?) in E. We can now add
o1 =? o3 to E. There are no other annotations needed to represent all sharing
that was possible in A.

To represent all sharing that was possible inD, we look at the pair of positions
lv1 n and lv2, whereD|lv1 n = o1 = D|lv2

. As we replaced the value of E|lv1
= o3

by L3(?), we have lv1 n 6∈ SPos(E). Hence, we add E|lv1 n = E|lv1
= o3 %$

o1 = E|lv2
= E|lv2

. No other annotations need to be added, and the resulting
state E is displayed in Fig. 13.

We can now draw instance edges from A and D to E and continue our
construction in E. As before, we decrement s by one and then load it to the
operand stack, reaching state F . F is similar to B, and we again perform a
refinement to obtain two successors. One successor corresponds to the case that
s is still non-negative, i.e., it corresponds to C. As in C, we can then evaluate
the whole loop body, constructing another L3-instance that is prepended to the
created list, reaching state G. In G, we are again at program position 10. We
again use the algorithm mergeStates on E and G, but the resulting state is
just a variable-renaming of E. Hence, G is already represented by E and we can
simply draw an instance edge from G to E.

The second successor resulting from refining F is H. In H, we leave the loop
and jump to instruction 35. There, we load the values o1 of e and o3 of x on
the operand stack, reaching state I. In I, we need to write o3 to field n of o1.
To do that, we need to resolve all possible equalities involving o1 and hence, we
perform an equality refinement. In J , x and e point to the same list element and
the write access thus creates a cyclic list of length 1, as shown in state L. This
list is then returned and the method ends.

In the other case K, o3 and o1 are not the same. We then proceed to write
o3 to the n field of o1. Here, we need to add a cyclicity annotation: Remember
that the algorithm creates x as a predecessor of e, so connecting e to x closes a
cycle. To specify when we need such additional annotations, for any state s let
o ∼ o′ denote that “o =? o′” or “o %$ o′” is contained in s. Then we define

24

as →∗ ◦ (= ∪ ∼), i.e., o o′′ iff there is an o′ with o
π
→ o′ for some π, where

o′ = o′′ or o′ ∼ o′′. In state K, we have o3 o1 and o3 is written to a field of o1.
Hence, this write access leads to a cycle and we add o1, o3	{n}. The following
definition extends [6, Def. 6] to the newly introduced annotations	 and ♦.

Definition 7 (Annotations introduced by putfield). Let s′ be obtained
from s by evaluating the instruction putfield f, i.e., writing some reference o0
to the field f of o1. Then all of the following annotations must exist in s′ (as
long as the corresponding objects are not concrete in s′):

– “p %$ q” for all p, q with p ∼ o1 and o0 q
– “p	FI ” for all p with p ∼ o1, o0

π
→ q with q	FI for some q.

– “p♦” for all p where p ∼ o1, o0
π
→ q with q♦ for some q.

– “p	F ” for all p with p ∼ o1, o0 q with q
π
→ q for some q and F is π

interpreted as set.
– “p♦” for all p where p ∼ o1, o0 q and ρ 6= ρ′ without common prefix exist

such that q →ρ r ←ρ′ q for some references q, r.
– “p	{f}” for all p where p o1 and o0 p.
– “p♦” for all p where p q, p o1, o0 q for some q, and where the paths

from p to o1 and p to q have no common non-empty prefix.

In this definition, the first three rules copy annotations from the successors of
the new field content o0 to its predecessors. The next two rules create annotations
for new, abstracted successors which have non-tree shapes. The last two rules
create the annotations needed to allow new non-tree shapes created by the write
access.

Applying this, we reach state M , in which we have added o1, o3	{n}, indi-
cating that these references may be part of cycles that contain the reference n.
The method ends in M and the termination graph construction is finished.

The resulting states L and M could then lead to the initial state of the
termination graph for methods like length, visit, or iterate, when calling
them on arbitrary cyclic lists.

Appendix B. Definitions and Proofs

Before discussing the proofs of the theorems in the paper, we extend the defi-
nitions of the previous section in order to handle the new definite reachability
annotation FI

99K!. More precisely in Def. 6, for s′ ⊑ s, we now require that if there
are two positions π, π′ with s|π

FI
99K! s|π′ , then the two references s′|π and s′|π′

are in fact connected by some FI -path in s′:

Definition 8 (Instance (extending Def. 6)). Let s′ = (pp, lv′, os′, h′, a′)
and s = (pp, lv, os, h, a). We call s′ an instance of s (denoted s′ ⊑ s) iff all of
the conditions from Def. 6 hold and furthermore, for all π, π′ ∈ SPos(s) with

s|π
FI
99K! s|π′ , there is some sequence s′|π = r0

FI
⇁ r1

FI
⇁ . . . rn = s′|π′ . Here,

r
FI
⇁ r′ holds iff there is a concrete connection r

τ
→ r′ for some τ using only

fields in FI or r
FI
′

99K! r′ with FI ′ ⊆ FI holds.

25

The merging algorithm can now be extended to automatically infer these
annotations, as discussed in Sect. 4. Not creating these restricting annotations
is always sound, as leaving them out only allows the representation of more
concrete states.

As discussed in Sect. 4.1, we have also changed the definition of our instance
refinement to make use of the 99K! annotation. To define this formally, we need
some additional notation. Let s be some state. Then s[o/o′] is the state obtained
from s by replacing all occurrences of the reference o in instance fields, local
variables, and on the operand stacks by o′. By s + {o 7→ v} we denote a state
which results from s by removing any information about o and instead the heap
now maps o to the value v . So in Fig. 13, C is (B+{i4 7→ [≥ 0]})[i2/i4]. Using this,
we can formally define the instance refinement, which replaces some reference o
mapped to an element from Unknown by any possible concrete value for o. So
the following definition extends the definition of “instance refinement” from [6,
Def. 5] to the new annotation 99K!.

Definition 9 (Instance Refinement). Let s ∈ States where h is the heap of
s and h(o) = (Cl, ?). Let Cl1, . . . , Cln be all non-abstract (not necessarily proper)
subtypes of Cl.

Then {s⊥, s1, . . . , sn} is an instance refinement of s. Here, s⊥ = s[o/ null]
and in si, we replace o by a fresh reference oi pointing to an object of type Cli.
For all fields fi,1 . . . fi,mi

of Cli (where fi,j has type Cli,j), a new reference oi,j is
generated which points to the most general value vi,j of type Cli,j, i.e., (−∞,∞)
for integers and Cli,j(?) for reference types. Then si is (s+{oi 7→ (Cli, ei), oi,1 7→
vi,1, . . . , oi,mi

7→ vi,mi
})[o/oi], where ei(fi,j) = oi,j for all j. If we have some o′

such that o FI
99K! o′ in s, we do not need to consider the state s⊥ in the instance

refinement.
Moreover, new annotations are added in si: If s contained o′ %$ o, we add

o′ =? oi,j and o′ %$ oi,j for all j.19 If s contained o FI
99K! o′ and fi,j ∈ FI , we

add oi,j
FI
99K! o′.

If we had o♦, we add oi,j♦, oi,j =? oi,j′ , and oi,j %$ oi,j′ for all j, j′ with
j 6= j′. If we had o	FI , we add oi,j	FI , oi =

? oi,j
20 and oi,j %$ oi,j′ for all j, j′

with j 6= j′.

These extended definitions serve as the basis for our correctness results in
Thms. 1-4. In [6], we proved the soundness of our termination graphs, and the
proof can easily be adapted to the extensions presented in this paper:

Proof (Thm. 1, Thm. 3, Thm. 4). In [6, Thm. 11], we proved that symbolic
evaluation on our abstract states correctly simulates the evaluation of concrete
states, based on the Java-semantics given in [21]. In its proof, we used three
properties:

19 Of course, if Cli,j and the type of o′ have no common subtype or one of them is int,
then o′ =? oi,j does not need to be added.

20 We do not need to do this if |FI | > 1, as then every cycle needs to contain more
than one field and thus, a field’s content may never be equal to its parent.

26

1. The relation ⊑ is transitive (cf. [6, Lemma 13]).
2. Our refinements are “valid” (cf. [6, Lemma 14-16], i.e., if s is refined to

s1, . . . sn and there is some concrete state c ⊑ s, then there is an si with
c ⊑ si.

3. Evaluation of abstract states simulates evaluation of concrete states (cf. [6,
Lemma 19]), i.e., if an abstract state s is evaluated to s′ and some concrete
state c ⊑ s is evaluated to c′, then c′ ⊑ s′ holds.

The proof of transitivity of ⊑ from [6, Lemma 13] can easily be adapted to our
extended definition. Only conditions (i)-(l) are new in Def. 6, and extending the
proof is straightforward. The proof of the validity of our refinements is similarly
simple. The definitions of integer and equality refinements remain unchanged
and only the instance refinement needs to be adapted to the new annotations
♦,	, and 99K! in Def. 9. For this, the proof of [6, Lemma 16] can easily be
extended.

Finally, the soundness of evaluation for single instructions needs to be con-
sidered. Here, only write accesses to the heap are of interest, as for all other
instructions, we can refine our states sufficiently to apply the standard Java se-
mantics. For such write accesses, we need to adapt the annotations in our states
according to Def. 7. This extended definition is, however, just a more detailed
version of the analogous definition in [6, Def. 6], extended by the handling of ♦
and	. Hence, the proof of [6, Lemma 19] can trivially be extended.

As all of these basic properties still hold, the proof of [6, Thm. 11] can directly
be applied to prove Thm. 1. The proofs for Thm. 3 and Thm. 4 are completely
analogous. ⊓⊔

Finally, we have to consider the soundness of the translation from termination
graphs to term rewrite systems.

Proof (Thm. 2). In [25, Thm. 3.7], we proved the analogous theorem for a trans-
lation where we encoded cyclic objects by using (fresh) variables. Now, we encode
only those parts of the object that are acyclic and encode the access to cyclic
parts of the object by fresh variables. Hence, the proof is trivially adapted to
the new setting. ⊓⊔

Aachener Informatik-Berichte

This list contains all technical reports published during the past three
years. A complete list of reports dating back to 1987 is available from:

http://aib.informatik.rwth-aachen.de/

To obtain copies please consult the above URL or send your request
to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,
Email: biblio@informatik.rwth-aachen.de

2009-01 ∗ Fachgruppe Informatik: Jahresbericht 2009
2009-02 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Quantitative Model Checking of Continuous-Time Markov Chains
Against Timed Automata Specifications

2009-03 Alexander Nyßen: Model-Based Construction of Embedded
Real-Time Software - A Methodology for Small Devices

2009-05 George B. Mertzios, Ignasi Sau, Shmuel Zaks: A New Intersection Model
and Improved Algorithms for Tolerance Graphs

2009-06 George B. Mertzios, Ignasi Sau, Shmuel Zaks: The Recognition of Tol-
erance and Bounded Tolerance Graphs is NP-complete

2009-07 Joachim Kneis, Alexander Langer, Peter Rossmanith: Derandomizing
Non-uniform Color-Coding I

2009-08 Joachim Kneis, Alexander Langer: Satellites and Mirrors for Solving In-
dependent Set on Sparse Graphs

2009-09 Michael Nett: Implementation of an Automated Proof for an Algorithm
Solving the Maximum Independent Set Problem

2009-10 Felix Reidl, Fernando Sánchez Villaamil: Automatic Verification of the
Correctness of the Upper Bound of a Maximum Independent Set Algo-
rithm

2009-11 Kyriaki Ioannidou, George B. Mertzios, Stavros D. Nikolopoulos: The
Longest Path Problem is Polynomial on Interval Graphs

2009-12 Martin Neuhäußer, Lijun Zhang: Time-Bounded Reachability in
Continuous-Time Markov Decision Processes

2009-13 Martin Zimmermann: Time-optimal Winning Strategies for Poset Games
2009-14 Ralf Huuck, Gerwin Klein, Bastian Schlich (eds.): Doctoral Symposium

on Systems Software Verification (DS SSV’09)
2009-15 Joost-Pieter Katoen, Daniel Klink, Martin Neuhäußer: Compositional

Abstraction for Stochastic Systems
2009-16 George B. Mertzios, Derek G. Corneil: Vertex Splitting and the Recog-

nition of Trapezoid Graphs
2009-17 Carsten Kern: Learning Communicating and Nondeterministic Au-

tomata

2009-18 Paul Hänsch, Michaela Slaats, Wolfgang Thomas: Parametrized Regular
Infinite Games and Higher-Order Pushdown Strategies

2010-01 ∗ Fachgruppe Informatik: Jahresbericht 2010
2010-02 Daniel Neider, Christof Löding: Learning Visibly One-Counter Au-

tomata in Polynomial Time
2010-03 Holger Krahn: MontiCore: Agile Entwicklung von domänenspezifischen

Sprachen im Software-Engineering
2010-04 René Wörzberger: Management dynamischer Geschäftsprozesse auf Ba-

sis statischer Prozessmanagementsysteme
2010-05 Daniel Retkowitz: Softwareunterstützung für adaptive eHome-Systeme
2010-06 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Computing maximum reachability probabilities in Markovian timed au-
tomata

2010-07 George B. Mertzios: A New Intersection Model for Multitolerance
Graphs, Hierarchy, and Efficient Algorithms

2010-08 Carsten Otto, Marc Brockschmidt, Christian von Essen, Jürgen Giesl:
Automated Termination Analysis of Java Bytecode by Term Rewriting

2010-09 George B. Mertzios, Shmuel Zaks: The Structure of the Intersection of
Tolerance and Cocomparability Graphs

2010-10 Peter Schneider-Kamp, Jürgen Giesl, Thomas Ströder, Alexander Sere-
brenik, René Thiemann: Automated Termination Analysis for Logic Pro-
grams with Cut

2010-11 Martin Zimmermann: Parametric LTL Games
2010-12 Thomas Ströder, Peter Schneider-Kamp, Jürgen Giesl: Dependency

Triples for Improving Termination Analysis of Logic Programs with Cut
2010-13 Ashraf Armoush: Design Patterns for Safety-Critical Embedded Systems
2010-14 Michael Codish, Carsten Fuhs, Jürgen Giesl, Peter Schneider-Kamp:

Lazy Abstraction for Size-Change Termination
2010-15 Marc Brockschmidt, Carsten Otto, Christian von Essen, Jürgen Giesl:

Termination Graphs for Java Bytecode
2010-16 Christian Berger: Automating Acceptance Tests for Sensor- and

Actuator-based Systems on the Example of Autonomous Vehicles
2010-17 Hans Grönniger: Systemmodell-basierte Definition objektbasierter Mod-

ellierungssprachen mit semantischen Variationspunkten
2010-18 Ibrahim Armaç: Personalisierte eHomes: Mobilität, Privatsphäre und

Sicherheit
2010-19 Felix Reidl: Experimental Evaluation of an Independent Set Algorithm
2010-20 Wladimir Fridman, Christof Löding, Martin Zimmermann: Degrees of

Lookahead in Context-free Infinite Games
2011-01 ∗ Fachgruppe Informatik: Jahresbericht 2011
2011-02 Marc Brockschmidt, Carsten Otto, Jürgen Giesl: Modular Termination

Proofs of Recursive Java Bytecode Programs by Term Rewriting
2011-03 Lars Noschinski, Fabian Emmes, Jürgen Giesl: A Dependency Pair

Framework for Innermost Complexity Analysis of Term Rewrite Systems
2011-04 Christina Jansen, Jonathan Heinen, Joost-Pieter Katoen, Thomas Noll:

A Local Greibach Normal Form for Hyperedge Replacement Grammars

2011-07 Shahar Maoz, Jan Oliver Ringert, Bernhard Rumpe: An Operational
Semantics for Activity Diagrams using SMV

2011-08 Thomas Ströder, Fabian Emmes, Peter Schneider-Kamp, Jürgen Giesl,
Carsten Fuhs: A Linear Operational Semantics for Termination and
Complexity Analysis of ISO Prolog

2011-09 Markus Beckers, Johannes Lotz, Viktor Mosenkis, Uwe Naumann (Edi-
tors): Fifth SIAM Workshop on Combinatorial Scientific Computing

2011-10 Markus Beckers, Viktor Mosenkis, Michael Maier, Uwe Naumann: Ad-
joint Subgradient Calculation for McCormick Relaxations

2011-11 Nils Jansen, Erika Ábrahám, Jens Katelaan, Ralf Wimmer, Joost-Pieter
Katoen, Bernd Becker: Hierarchical Counterexamples for Discrete-Time
Markov Chains

2011-12 Ingo Felscher, Wolfgang Thomas: On Compositional Failure Detection
in Structured Transition Systems

2011-13 Michael Förster, Uwe Naumann, Jean Utke: Toward Adjoint OpenMP
2011-14 Daniel Neider, Roman Rabinovich, Martin Zimmermann: Solving Muller

Games via Safety Games
2011-16 Niloofar Safiran, Uwe Naumann: Toward Adjoint OpenFOAM
2011-18 Kamal Barakat: Introducing Timers to pi-Calculus
2011-19 Marc Brockschmidt, Thomas Ströder, Carsten Otto, Jürgen Giesl: Au-

tomated Detection of Non-Termination and NullPointerExceptions for
Java Bytecode

2011-24 Callum Corbett, Uwe Naumann, Alexander Mitsos: Demonstration of a
Branch-and-BoundAlgorithm for Global Optimization using McCormick
Relaxations

2011-25 Callum Corbett, Michael Maier, Markus Beckers, Uwe Naumann, Amin
Ghobeity, Alexander Mitsos: Compiler-Generated Subgradient Code for
McCormick Relaxations

2011-26 Hongfei Fu: The Complexity of Deciding a Behavioural Pseudometric on
Probabilistic Automata

2012-01 ∗ Fachgruppe Informatik: Annual Report 2012
2012-02 Thomas Heer: Controlling Development Processes
2012-03 Arne Haber, Jan Oliver Ringert, Bernhard Rumpe: MontiArc - Architec-

tural Modeling of Interactive Distributed and Cyber-Physical Systems
2012-04 Marcus Gelderie Strategy Machines and their Complexity
2012-05 Thomas Ströder, Fabian Emmes, Jürgen Giesl, Peter Schneider-Kamp,

and Carsten Fuhs Automated Complexity Analysis for Prolog by Term
Rewriting

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

