
Termination Analysis of Logic Programs with Cut
Using Dependency Triples∗

Thomas Ströder, Jürgen Giesl
LuFG Informatik 2, RWTH Aachen University, Germany
{stroeder,giesl}@informatik.rwth-aachen.de

Peter Schneider-Kamp
IMADA, University of Southern Denmark, Denmark

petersk@imada.sdu.dk

Abstract

In very recent work, we introduced a non-termination preserving transformation from logic pro-
grams with cut to definite logic programs. In this paper we extend the transformation such that
logic programs with cut are transformed into dependency triple problems instead of definite logic
programs. By the implementation of our new method and extensive experiments, we show that the
power of automated termination analysis for logic programs with cut is increased substantially.

1 Introduction

Automated termination analysis for logic programs has been widely studied, see, e.g., [3, 4, 5, 11, 13,
14, 17]. Still, virtually all existing techniques only prove universal termination of definite logic pro-
grams, which do not use the cut “!”, while most realistic Prolog programs do so. In [16] we introduced
a non-termination preserving automated transformation from logic programs with cut to definite logic
programs. The transformation consists of two stages. In the first stage we construct a so-called termi-
nation graph for a given logic program with cut. The second stage is the generation of a definite logic
program from this termination graph. In this paper, we improve the second stage of the transformation
by generating dependency triple problems instead of definite logic programs from termination graphs.

Dependency triples were introduced in [12] and improved further to the so-called dependency triple
framework in [15]. Here, the idea was to adapt the successful dependency pair framework [2, 8, 9, 10]
from term rewriting to (definite) logic programming. The experiments in [15] showed that this leads
to the most powerful approach for automated termination analysis of definite logic programs so far.
Our aim is to benefit from this work by providing an immediate translation from termination graphs to
dependency triple problems in order to obtain an analysis that preserves termination in more cases.

f(0,Y) ← !,eq(Y,0). (1)

f(X ,Y) ← p(X ,P), f(P,U), f(U,Y). (2)

p(0,0). (3)

p(s(X),X). (4)

eq(X ,X). (5)

Figure 1: Example program

bla
Example 1. To illustrate the concepts and the con-
tributions of this paper, we use the leading example
of Fig. 1. It formulates a simplified variant of a func-
tional program from [7, 20] with nested recursion as
a logic program. The auxiliary predicate p is used to
compute the predecessor of a natural number while
eq is used to unify two terms. See, e.g., [1] for the
basics of logic programming.

Note that when ignoring cuts, this logic pro-
gram is not terminating for the set of queries Q =
{f(t1, t2) | t1 is ground}. On the other hand, the program terminates if the cuts are taken into account.

∗Supported by the DFG grant GI 274/5-2, the DFG Research Training Group 1298 (AlgoSyn), and the Danish Natural
Science Research Council.

1

In this paper, we first present a termination graph obtained for this example program in Sect. 2 before
we apply our new transformation from termination graphs to dependency triple problems in Sect. 3. We
show that this new transformation has significant practical advantages in Sect. 4 and, finally, we conclude
in Sect. 5.

2 Termination Graphs

Using the method from [16] we obtain the following termination graph for Ex. 1, where we applied some
simplifications to ease presentation. The states of this graph contain sequences of abstract queries. Here,

f(T1 ,T2)

A

(f(T1,T2))1 | (f(T1 ,T2))2

B

CASE
!,eq(T3 ,0) | (f(0,T2))2

C

EVAL

T1/0,T2/T3

(f(T1 ,T2))2;T1 � 0

D

EVAL

eq(T3 ,0)

CUTALL

p(T4 ,P), f(P,U), f(U,T5);T4 � 0
EVAL

T1/T4,T2/T5

ε

EVAL

(eq(T3 ,0))5

CASE

(p(T4 ,P), f(P,U), f(U,T5))3 |
(p(T4 ,P), f(P,U), f(U,T5))4;T4 � 0

CASE

2G

EVAL
T3/0

ε

EVAL

(p(T4 ,P), f(P,U), f(U,T5))4;T4 � 0

BACKTRACK

ε

SUC

f(T6 ,U), f(U,T5)

EVALT4/s(T6)

ε
EVAL

f(T6 ,U)

E

SPLIT

INSTANCE

f(T7 ,T8)

F

SPLIT

U/T7 ,T5/T8

INSTANCE

Figure 2: Termination Graph for Ex. 1.

the abstract variables Ti stand for
arbitrary terms, whereas underlined
abstract variables only stand for
ground terms. A sequence of
queries Q1 | Q2 | Q3 | . . . repre-
sents the current goal Q1 and the
remaining backtracking possibili-
ties Q2,Q3, . . . in the order of their
execution. Sometimes we anno-
tate states by unification informa-
tion such as “T4 � 0” meaning that
T4 only stands for terms that do not
unify with 0. We start in Node A

with the state f(T1,T2) representing
the set of queries Q. Then the ter-
mination graph is constructed by a symbolic evaluation of the program. The CASE rule performs Pro-
log’s clause selection rule by labeling the queries with the numbers of the program clauses to indicate
which clause to apply next to a query. We applied this rule to the initial node A leading to a node B

with two labeled copies of this query. They correspond to the two possibly applicable clauses (1) and
(2) in the program. The EVAL rule then performs the resolution with Clause (1), leading to Node C.
Moreover, it also produces the child node D which represents those cases where T1 stands for a term
that does not unify with 0. Here, we have to backtrack by removing the first goal from the current state.
If we detect that the current goal cannot unify with the head of the corresponding program clause, we
use the BACKTRACK rule which is equivalent to the second successor of the EVAL rule. The CUTALL

rule drops further backtracking possibilities while the SUC rule backtracks after a successful evaluation,
since we examine universal termination. Finally, the SPLIT rule separates two atoms in one query and
the INSTANCE rule refers back to a state representing a superset of terms compared to the current state.
The SPLIT and INSTANCE rules are needed to obtain a finite graph instead of an infinite tree. We refer
to [16] for further details and explanations. In our example, the termination graph of Fig. 2 represents all
possible derivations of the program for the set of queries Q from Ex. 1.

3 Transformation into Dependency Triple Problems

To prove that all derivations of the example program and the set of queries Q are terminating, we have
to show that the cycles in the termination graph from Fig. 2 cannot be traversed infinitely often when
following a derivation of the original program. To this end, we synthesize a dependency triple problem
[15] simulating this traversal.

2

The basic structure in the dependency triple framework is very similar to a clause in logic program-
ming. A dependency triple (DT) [12] is a clause H← I,B where H and B are atoms and I is a sequence
of atoms. Intuitively, such a DT states that a call that is an instance of H can be followed by a call that is
an instance of B if the corresponding instance of I can be proven.

Here, a “derivation” is defined in terms of a chain. Let D be a set of DTs, P be the program
under consideration, and Q be the class of queries to be analyzed.1 A (possibly infinite) sequence
(H0← I0,B0),(H1← I1,B1), . . . of variants from D is a (D ,Q,P)-chain iff there are substitutions θi,σi

and an A ∈Q such that θ0 = mgu(A,H0) and for all i, σi is an answer substitution for the query Iiθi in
the program P , and θi+1 = mgu(Biθiσi,Hi+1). Such a tuple (D ,Q,P) is called a dependency triple
problem and it is terminating iff there is no infinite (D ,Q,P)-chain.

As an example, consider the DT problem (D ,Q,P) with D = {d1} where d1 = p(s(X),Y) ←
eq(X ,Z),p(Z,Y), Q = {p(t1, t2) | t1 is ground}, and P = {eq(X ,X)}. Now, “d1, d1” is a (D ,Q,P)-
chain. To see this, assume that A = p(s(s(0)),0). Then θ0 = {X/s(0),Y/0}, σ0 = {Z/s(0)}, and
θ1 = {X/0,Y/0}.

The basic idea how to synthesize DT problems from termination graphs is to generate DTs for every
triple path in the termination graph. These are paths which traverse cycles or which connect cycles
to the initial state. In Fig. 2 there are two cycles already containing the initial state. As cycles must
contain at least one INSTANCE edge, it is sufficient to consider triple paths from successor states of
INSTANCE nodes or the initial state to INSTANCE nodes or their successors. So in our example, we have
two triple paths: from A to E and from A to F. We use distinct predicate symbols for every state having
all distinct variables occurring in the respective state as arguments. The only exception are INSTANCE

nodes. Here we use the same predicate symbol as for the successor of the INSTANCE node. So if q
is the new predicate symbol for Node A, then A is converted to the atom q(T1,T2), E is converted to
q(T6,U), and F is converted to q(T7,T8). To transform triple paths into DTs, we use the first node (e.g.,
A) as the head of the DT and the last node (e.g., E or F) as the last atom of the DT. Moreover, we apply
the substitutions on the path to the head of the DT. For the path from A to E we obtain the substitution
[T1/T4,T2/T5]◦ [T4/s(T6)] and, thus, the DT q(s(T6),T5)← q(T6,U).

Paths traversing the second successor of a SPLIT node may only be followed if the evaluation of the
first SPLIT successor succeeds. This corresponds to the standard goal selection rule. Therefore, we add
intermediate goals to the DTs. These goals correspond to the evaluation of first SPLIT successors when-
ever we traverse a second SPLIT successor. However, for intermediate goals we use different predicate
symbols than the ones we used for the head and last body goal of the DTs. For the path from A to F we
then obtain the DT q(s(T6),T8)← r(T6,T7),q(T7,T8) using r as the predicate for the intermediate goals.

Now, for the evaluation of intermediate goals we must additionally consider so-called program paths.
These are paths from successors of INSTANCE nodes or first successors of SPLIT nodes to SUC nodes,
INSTANCE nodes, or successors of INSTANCE nodes. However, we can exclude paths traversing other
first successors of SPLIT nodes as we are interested in successful evaluations only. In Fig. 2 we have two
program paths: from A to F and from A to G. For these paths we generate clauses in the same way as for
the DTs with the only exception that we only take the predicate symbol r used for intermediate goals.
For SUC nodes, however, we have no body goal and generate facts.

The set of queries for the resulting DT problem contains all queries for the predicate corresponding to
the initial state where those positions are assumed to be ground whose corresponding variable is known
to represent ground terms in the initial state.

Thus, we obtain the DT problem (DG,QG,PG) from Fig. 3 for the termination graph G of Fig. 2.
This DT problem is easily shown to be terminating by our automated termination prover AProVE.

1For simplicity, we use a set of initial queries instead of a general call set as in [15].

3

DG = {q(s(T6),T5) ← q(T6,U).
q(s(T6),T8) ← r(T6,T7),q(T7,T8).}

PG = {r(s(T6),T8) ← r(T6,T7), r(T7,T8).
r(0,0).}

QG contains all queries q(t1, t2) where t1 is a ground
term.

Figure 3: DT problem for Ex. 1

We now state the central theorem of this pa-
per where we prove that termination of the result-
ing DT problem implies termination of the orig-
inal logic program with cut for the set of queries
represented by the root state of the termination
graph. For the proof we refer to [6].

Theorem 2 (Correctness). If G is a termination
graph for a logic program P and a set of queries
Q such that the DT problem for G is terminating,
then P is terminating w.r.t. Q.

Note that the converse of this theorem does not hold.

4 Implementation and Experiments

We implemented the new transformation in our fully automated termination prover AProVE and tested it
on all 402 examples for logic programs from the Termination Problem Data Base [19] used for the annual
international Termination Competition [18]. We compared the implementation of the new transformation
(AProVE DT) with the implementation of the previous transformation into definite logic programs from
[16] (AProVE Cut), and with a direct transformation into term rewrite systems ignoring cuts (AProVE
Direct) from [14]. We ran the different versions of AProVE on a 2.67 GHz Intel Core i7 and, as in
the international Termination Competition, we used a time-out of 60 seconds for each example. For all
versions we give the number of examples which could be proved terminating (denoted “Successes”), the
number of examples where termination could not be shown (“Failures”), the number of examples for
which the timeout of 60 seconds was reached (“Timeouts”), and the total runtime (“Total”) in seconds.
All details of this empirical evaluation can also be seen online and one can run AProVE on arbitrary
examples via a web interface [6].

AProVE Direct AProVE Cut AProVE DT
Successes 243 259 315
Failures 144 129 77
Timeouts 15 14 10
Total 2485.7 3288.0 2311.6

Table 1: Experimental results on the TPDB

As shown in Table 1, the new transfor-
mation significantly increases the number
of examples that can be proved terminating.
In particular, we obtain 56 additional proofs
of termination compared to [16]. And in-
deed, for all examples where AProVE Cut
succeeds, AProVE DT succeeds, too.

In addition to being more powerful, the
new version using dependency triples is

also more efficient than any of the two other versions, resulting in fewer timeouts and a total runtime
that is less than the one of the direct version and only 70% of the version corresponding to [16].

5 Conclusion

We have shown that the termination graphs introduced in [16] can be used to obtain a transformation from
logic programs with cut to dependency triple problems. Our experiments show that this new approach
is both considerably more powerful and more efficient than a translation to definite logic programs as
in [16]. As the dependency triple framework allows a modular and flexible combination of arbitrary
termination techniques from logic programming and even term rewriting, the new transformation to
dependency triples can be used as a frontend to any termination tool for logic programs (by taking

4

the union of DG and PG in the resulting DT problem (DG,QG,PG)) or term rewriting (by using the
transformation of [15]).

References
[1] K. R. Apt. From Logic Programming to Prolog. Prentice Hall, London, 1997.
[2] T. Arts and J. Giesl. Termination of Term Rewriting using Dependency Pairs. Theoretical Computer Science,

236(1,2):133–178, 2000.
[3] M. Bruynooghe, M. Codish, J. P. Gallagher, S. Genaim, and W. Vanhoof. Termination Analysis of Logic

Programs through Combination of Type-Based Norms. ACM Transactions on Programming Languages and
Systems, 29(2):Article 10, 2007.

[4] M. Codish, V. Lagoon, and P. J. Stuckey. Testing for Termination with Monotonicity Constraints. In ICLP ’05,
volume 3668 of LNCS, pages 326–340, 2005.

[5] D. De Schreye and S. Decorte. Termination of Logic Programs: The Never-Ending Story. Journal of Logic
Programming, 19,20:199–260, 1994.

[6] Empirical evaluation and proofs for “Termination Analysis of Logic Programs with Cut Using Dependency
Triples”. http://aprove.informatik.rwth-aachen.de/eval/cutTriples/.

[7] J. Giesl. Termination of Nested and Mutually Recursive Algorithms. Journal of Automated Reasoning,
19:1–29, 1997.

[8] J. Giesl, R. Thiemann, and P. Schneider-Kamp. The Dependency Pair Framework: Combining Techniques
for Automated Termination Proofs. In LPAR ’04, volume 3452 of LNAI, pages 301–331, 2005.

[9] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and Improving Dependency Pairs.
Journal of Automated Reasoning, 37(3):155–203, 2006.

[10] N. Hirokawa and A. Middeldorp. Automating the Dependency Pair Method. Information and Computation,
199(1,2):172–199, 2005.

[11] F. Mesnard and A. Serebrenik. Recurrence with Affine Level Mappings is P-Time Decidable for CLP(R).
Theory and Practice of Logic Programming, 8(1):111–119, 2007.

[12] M. T. Nguyen, J. Giesl, P. Schneider-Kamp, and D. De Schreye. Termination Analysis of Logic Programs
based on Dependency Graphs. In LOPSTR ’07, volume 4915 of LNCS, pages 8–22, 2008.

[13] M. T. Nguyen, D. De Schreye, J. Giesl, and P. Schneider-Kamp. Polytool: Polynomial Interpretations as a
Basis for Termination Analysis of Logic Programs. Theory and Practice of Logic Programming, 2010. To
appear.

[14] P. Schneider-Kamp, J. Giesl, A. Serebrenik, and R. Thiemann. Automated Termination Proofs for Logic
Programs by Term Rewriting. ACM Transactions on Computational Logic, 10(1):2:1–49, 2009.

[15] P. Schneider-Kamp, J. Giesl, and M. T. Nguyen. The Dependency Triple Framework for Termination of
Logic Programs. In LOPSTR ’09, LNCS, 2010. To appear. Preliminary version and experimental details
available from http://aprove.informatik.rwth-aachen.de/eval/PolyAproVE/.

[16] P. Schneider-Kamp, J. Giesl, T. Ströder, A. Serebrenik, and R. Thiemann. Automated Termination Analysis
for Logic Programs with Cut. In ICLP ’10, 2010. To appear. Preliminary version and experimental details
available from http://aprove.informatik.rwth-aachen.de/eval/cut/.

[17] A. Serebrenik and D. De Schreye. On Termination of Meta-Programs. Theory and Practice of Logic Pro-
gramming, 5(3):355–390, 2005.

[18] The Termination Competition. http://www.termination-portal.org/wiki/Termination_
Competition.

[19] The Termination Problem Data Base 7.0 (December 11, 2009). http://termcomp.uibk.ac.at/status/
downloads/.

[20] C. Walther. On Proving the Termination of Algorithms by Machine. Artificial Intelligence, 71(1):101–157,
1994.

5

http://aprove.informatik.rwth-aachen.de/eval/cutTriples/
http://aprove.informatik.rwth-aachen.de/eval/PolyAproVE/
http://aprove.informatik.rwth-aachen.de/eval/cut/
http://www.termination-portal.org/wiki/Termination_
Competition
http://termcomp.uibk.ac.at/status/
downloads/

	Introduction
	Termination Graphs
	Transformation into Dependency Triple Problems
	Implementation and Experiments
	Conclusion

