

Prof. Dr. Jürgen Giesl

Peter Schneider-Kamp, Stephan Swiderski, René Thiemann

Übungen Termersetzungssysteme – Blatt 13

Abgabe am Dienstag, dem 6.2.2007, zu Beginn der Übung.

Aufgabe 1 (3 Punkte)

Wenden Sie den Algorithmus BASIC_COMPLETION auf die folgenden Termgleichungssysteme an. Wählen Sie dabei jeweils eine geeignete Reduktionsordnung ≻.

a)
$$\mathcal{E}_1 = \left\{ \begin{array}{ll} \mathsf{f}(x,y) & \equiv & \mathsf{g}(x) \\ \mathsf{f}(x,y) & \equiv & \mathsf{g}(y) \\ \mathsf{g}(\mathsf{s}(x)) & \equiv & \mathsf{a} \\ \mathsf{h}(x,y) & \equiv & \mathsf{s}(x) \\ \mathsf{h}(x,x) & \equiv & x \end{array} \right\}$$

b)
$$\mathcal{E}_2 = \left\{ \begin{array}{ll} \mathsf{g}(\mathsf{h}(x)) & \equiv & \mathsf{f}(\mathsf{g}(x)) \\ \mathsf{h}(\mathsf{g}(x)) & \equiv & \mathsf{g}(\mathsf{h}(x)) \end{array} \right\}$$

Aufgabe 2 (2 Punkte)

Vervollständigen Sie das Termgleichungssystem \mathcal{E}_1 aus Aufgabe 1 mit dem verbesserten Verfahren aus Abschnitt 6.2. Wenden Sie hierzu die Transformationsregeln aus Definition 6.2.2 in geeigneter Weise an.

Aufgabe 3 (2 Punkte)

Nutzen Sie das Verfahren BASIC_COMPLETION als Semi-Entscheidungsverfahren für das Termgleichungssystem \mathcal{E}_2 aus Aufgabe 1. Verwenden Sie dabei \succ_{LPO} mit Präzedenz $f \supset g \supset h$ als Reduktionsordnung, und überprüfen Sie, ob

$$f(f(h(h(h(g(a)))))) \equiv f(h(h(h(h(g(a))))))$$

aus \mathcal{E}_2 folgt.

Aufgabe 4 (4 Punkte)

Beweisen Sie, dass die die Äquivalenz zweier endlicher konvergenter TESe \mathcal{R}_0 und \mathcal{R}_1 entscheidbar ist. Beweisen Sie dazu die folgende Hilfsaussage:

 \mathcal{R}_0 und \mathcal{R}_1 sind äquivalent gdw. für alle $i \in \{0,1\}$ und alle Regeln $\ell \to r \in \mathcal{R}_i$ die Terme ℓ und r in \mathcal{R}_{1-i} zusammenführbar sind.

Hinweis: Zwei TES \mathcal{R}_0 und \mathcal{R}_1 heißen äquivalent gdw. $\leftrightarrow_{\mathcal{R}_0}^* = \leftrightarrow_{\mathcal{R}_1}^*$.

Aufgabe 5 (1+10 Punkte)

Das folgende Termgleichungssystem \mathcal{E} ist eine Variante des Termgleichungssystems für Gruppen Es wurden nur die Argumente von f in Gleichung (2) vertauscht und Gleichung (4) wurde hinzugefügt.

$$f(f(x,y),z) \equiv f(x,f(y,z)) \tag{1}$$

$$f(e, x) \equiv x \tag{2}$$

$$f(x, i(x)) \equiv e \tag{3}$$

$$i(f(x,y)) \equiv f(i(y),i(x)) \tag{4}$$

Entscheiden Sie mit dem Verfahren aus Aufgabe 4, ob \mathcal{E} äquivalent zu dem konvergenten TES $\{(G1)-(G4), (G7), (G10)-(G13), (G16)\}$ für Gruppen aus der Vorlesung ist. (siehe auch Folie 25 vom 26.1.)

Erzeugen Sie dazu mit dem verbesserten Vervollständigungsverfahren ein zu \mathcal{E} äquivalentes, konvergentes TES \mathcal{R} . Nutzen Sie hierzu \succ_{LPO} mit der Präzedenz i \sqsupset f \sqsupset e als Reduktionsordnung. Um den Aufwand der Vervollständigung zu reduzieren, brauchen Sie keine kritischen Paare bilden, an der eine der folgenden Regeln beteiligt ist. (Alle diese kritischen Paare sind in \mathcal{R} zusammenführbar.)

$$i(f(x,y)) \to f(i(y),i(x))$$
 $i(e) \to e$ $f(i(x),f(x,y)) \to y$

- \mathcal{R} enthält genau 9 Regeln aus Termen mit maximal 3 Funktionssymbolen und 3 Variablen. Die Regeln, die Sie erzeugen müssen, sind also eher klein. In einer optimalen Reduktionsfolge erzeugen Sie genau die benötigten Regeln. Sie bräuchten also niemals Reduziere-{Links/Rechts} anwenden.
- Auch mit der obigen Einschränkung müssen immerhin 16 kritische Paare gebildet werden (insgesamt sind es 41).