Notes:

- Please solve these exercises in **groups of two**!
- The solutions must be handed in **directly before (very latest: at the beginning of)** the exercise course on Wednesday, May 18th, 2011, in lecture hall AH 2. Alternatively you can drop your solutions into a box which is located right next to Prof. Giesl’s office (until the exercise course starts).
- Please write the **names** and **immatriculation numbers** of all (two) students on your solution. Please staple the individual sheets!
- Exercises or exercise parts marked with a star are voluntary **challenge** exercises with advanced difficulty. However, they do not contribute to the overall number of points that will be required for the exam qualification or for the Übungsschein, respectively (i.e., you can obtain **bonus points** for such exercises).

Exercise 1 (Examples for Well-foundedness and Confluence): (2 + 2 + 1 = 5 points)

a) Let $\delta \in \mathbb{Q}^+ = \{x \in \mathbb{Q} \mid x > 0\}$ and $c \in \mathbb{Q}$. Consider the relation $\geq_{\delta,c} \subseteq \mathbb{Q} \times \mathbb{Q}$, where $x \geq_{\delta,c} y$ holds iff both $x \geq y + \delta$ and $y > c$ hold. Prove or disprove well-foundedness and confluence of $\geq_{\delta,c}$.

b) Consider the relation $\supseteq_A \subseteq \mathcal{P}(A)^2$ for an arbitrary set A. Here $\mathcal{P}(A)$ denotes the power set of A, i.e., the set of all sets with elements from A. Then $M \supseteq_A N$ holds iff $M \neq N$ and for all $a \in N$ also $a \in M$ holds. Prove or disprove well-foundedness and confluence of \supseteq_A.

c) From the lecture we know that the strict subterm relation $\triangleright \subseteq \mathcal{T}(\Sigma, \mathcal{V})^2$ is well founded. Now prove or disprove confluence of \triangleright.

Exercise 2 (Well-foundedness and Confluence): (3 + 3 = 6 points)

Consider an arbitrary binary relation $\rightarrow \subseteq A \times A$. Now consider the following three relations:

1. \rightarrow
2. \rightarrow^+
3. $\rightarrow^{*,\neq}$, where $s \rightarrow^{*,\neq} t$ iff $s \rightarrow^* t$ and $s \neq t$.

a) Investigate for each pair of these relations if well-foundedness of the first relation implies well-foundedness of the second relation (6 cases). For this, either give a proof or a counterexample.

b) Investigate for each pair of these relations if confluence of the first relation implies confluence of the second relation (6 cases). For this, either give a proof or a counterexample.
Exercise 3 (Programming in Term Rewriting): \((1 + (1 + 1 + 1) + 1 = 5\) points)

a) Define a term rewrite system for `append`, which can be used to append two lists \([x_1, x_2, \ldots, x_n]\) and \([y_1, y_2, \ldots, y_m]\) to obtain the list \([x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_m]\).

To represent lists, use the two symbols `Nil ∈ Σ₀` and `Cons ∈ Σ₂`. `Nil` represents the empty list and `Cons(x, xs)` represents a list with `x` as first value and `xs` is the representation of the remaining list elements. Thus, the term `Cons(x, Cons(y, Nil))` corresponds to the list `[x, y]`. For example, your system should describe the reduction `append(Cons(O, Nil), Cons(s(O), Nil)) →* Cons(O, Cons(s(O), Nil))`.

b) i) Translate the following functional Haskell program into a term rewrite system:

\[
\begin{align*}
\text{take} & \ n & \text{Nil} & = \text{Nil} \\
\text{take} & \ 0 & \text{xs} & = \text{Nil} \\
\text{take} & \ (n+1) & \ (\text{Cons} \times \text{xs}) & = \ (\text{Cons} \times (\text{take} \ n \ \text{xs}))
\end{align*}
\]

Each of the equations from the functional program should be translated to one term rewrite rule. Use `O, s` to represent natural numbers and `Cons, Nil` to represent lists.

ii) How many normal forms does the term \(t_1 = \text{from}(O)\) have? Is there an infinite reduction that starts in \(t_1\)?

iii) How many normal forms does the term \(t_2 = \text{take}(s(O), \text{from}(O))\) have? Is there an infinite reduction that starts in \(t_2\)?

c) Consider the following term rewrite system:

\[
\begin{align*}
p(O) & \rightarrow O \\
p(s(n)) & \rightarrow n \\
copy(O, xs) & \rightarrow \text{Nil} \\
copy(n, Nil) & \rightarrow \text{Nil} \\
copy(n, Cons(x, xs)) & \rightarrow Cons(x, copy(p(n), xs))
\end{align*}
\]

Here, \(p\) is the predecessor function. The system is not confluent. Give an example for a term which has at least two normal forms.

Exercise 4 (Term Rewriting and Turing Machines): \((4 + 4)\) points

A deterministic Turing machine is a 6-tuple \((Q, Γ, ε, q₀, q_e, δ)\) with a finite set of states \(Q\), a finite alphabet \(Γ\), the blank symbol \(ε \in Γ\), the initial state \(q₀ \in Q\), the final state \(q_e \in Q\), and the step function \(δ : Q \setminus \{q_e\} \times Γ → Q \times \{\text{left}, \text{right}\} \times Γ\). A configuration \(K\) of a Turing machine is a triple \((q, p, b)\), where \(q\) is a state from \(Q\) and \(p ∈ Z\) is a position on the tape \(b\). The tape \(b\) is a memory which is modeled as a function from \(Z\) to \(Γ\), where only finitely many memory cells are used, i.e., \(b(p) = ε\) only holds for finitely many positions \(p\).

The initial configuration \(K_0\) is \((q₀, 0, b_{\text{initial}})\), where \(b_{\text{initial}}(x) = ε\) for all \(x ∈ Z\). The computation relation \(\vdash\) is defined as follows:

\[
(q, p, b) \vdash (q', p', b') \quad \text{iff} \quad q \neq q_e, \quad \delta(q, b(p)) = (q', \text{direction}, a), \quad p' = \begin{cases} p + 1, & \text{if direction = right} \\ p - 1, & \text{otherwise} \end{cases} \quad \text{and} \quad b'\text{' is the tape with } b'(x) = \begin{cases} a, & \text{if } x = p \\ b(x), & \text{otherwise} \end{cases}
\]

A Turing machine is terminating iff there is no infinite sequence \(K_0 \vdash K_1 \vdash K_2 \vdash \ldots\). The question whether a Turing machine terminates - the so-called halting problem - is generally known to be undecidable.
a) For a given arbitrary Turing machine \((Q, \Gamma, \varepsilon, q_s, q_e, \delta)\), construct a corresponding term rewrite system \(R\), such that every computation step of the Turing machine can be simulated by one or more rewrite steps of the term rewrite system, i.e., for each two configurations \(K_1\) and \(K_2\) w.r.t. the Turing machine with \(K_1 \vdash K_2\), there are two terms \(t_1\) and \(t_2\) such that \(t_1\) is uniquely representing \(K_1\), \(t_2\) is uniquely representing \(K_2\), and \(t_1 \rightarrow^*_{R} t_2\). You do not have to provide a formal proof for your construction, but you should explain it.

Hints:
- In order to represent a configuration \((q, p, b)\) as a term, you can for example use a binary function symbol \(f_q\) for each state \(q \in Q\). The two arguments \(\ell\) and \(r\) of a term \(f_q(\ell, r)\) then represent the symbols before (including) and after (excluding) the position \(p\) on the tape. In the following example, the position \(p\) points to the symbol \(a_3\). Then \(\ell\) represents the sequence of symbols \(a_3a_2a_1\) and \(r\) represents the sequence of symbols \(a_4a_5a_6\).

```
Tape b        \ldots \varepsilon \varepsilon a_1 a_2 a_3 a_4 a_5 a_6 \varepsilon \varepsilon \ldots
```

b) The construction from the previous exercise part is probably not useful to show undecidability of the question whether an arbitrary given term rewrite system terminates. The reason is that a solution for the first exercise part may start with terms representing unreachable system configurations w.r.t. the Turing machine which cause non-termination of the corresponding term rewrite system. As an example, consider the Turing machine \((\{q_s, q_1\}, \{\varepsilon\}, \varepsilon, q_s, q_{es}, \delta)\) with \(\delta(q_1, \varepsilon) = (q_1, \text{right}, \varepsilon)\). Since initial and final state are the same, the Turing machine obviously terminates. However, starting from the (unreachable) configuration \(K = (q_1, 0, b)\), we obtain the infinite sequence \(K \vdash (q_1, 1, b) \vdash (q_1, 2, b) \vdash \ldots\). Therefore, a term representing the configuration \(K\) might not terminate w.r.t. the constructed term rewrite system.

Adapt your construction from the previous exercise part in such a way that the Turing machine is terminating iff the corresponding term rewrite system is terminating. Again, you do not have to provide a formal proof for your construction, but you should explain it.