Exercise 1 (Equivalent and Convergent Term Rewrite Systems): (3 + 2 + 2 = 7 points)
Consider the following set of equalities \mathcal{E} and the term rewrite system \mathcal{R}.

\[\mathcal{E} = \{ f(f(g(x))) \equiv x, x \equiv g(x), f(g(x)) \equiv g(g(f(x))) \} \]
\[\mathcal{R} = \{ f(f(x)) \rightarrow x, g(x) \rightarrow x \} \]

a) Please show that \mathcal{R} is equivalent to \mathcal{E}.

b) Please show $f(f(f(f(f(f(f(f(f(f(x)))))))))) \equiv_E f(g(f(f(x))))$ only using the relation \leftrightarrow_E and Birkhoff’s Theorem (in particular, you must not use \mathcal{R} in this subexercise).

c) Please show $f(f(f(f(f(f(f(f(f(x)))))))))) \equiv_E f(g(f(f(x))))$ using the algorithm WORTPROBLEM.

Hints:
- \mathcal{R} is convergent.

Exercise 2 (Noetherian Induction): (2 + 4 = 6 points)
Consider the following term rewrite system \mathcal{R}, which represents the well-known Ackermann function:

\[\text{ack}(O, m) \rightarrow s(m) \quad (1) \]
\[\text{ack}(s(n), O) \rightarrow \text{ack}(n, s(O)) \quad (2) \]
\[\text{ack}(s(n), s(m)) \rightarrow \text{ack}(n, \text{ack}(s(n), m)) \quad (3) \]

a) Choose a relation $\triangleright \subseteq \{ (s^n(O), s^k(O)) \mid n_1, k_1 \in \mathbb{N} \} \times \{ (s^n(O), s^k(O)) \mid n_2, k_2 \in \mathbb{N} \}$ and prove that your \triangleright is well-founded ("fundiert").

b) Prove that any normal form of $\text{ack}(s^n(O), s^m(O))$ has the form $s^k(O)$ by noetherian induction using the relation \triangleright from part a).
Exercise 3 (The Algorithm RIGHT-GROUND TERMINATION): \((3 + 2 = 5 \text{ points}) \)

Prove or disprove termination of the following term rewrite systems over the signature \(\Sigma = \{ f, a, b \} \) using the algorithm RIGHT-GROUND TERMINATION from the lecture:

a)

\[
\begin{align*}
f(f(x, y), z) & \rightarrow f(a, f(a, b)) \\
f(a, f(x, x)) & \rightarrow f(a, f(b, a)) \\
f(a, x) & \rightarrow a \\
f(x, b) & \rightarrow f(a, a) \\
f(b, a) & \rightarrow b
\end{align*}
\]

b)

\[
\begin{align*}
f(a, f(a, x)) & \rightarrow f(a, a) \\
f(x, f(a, f(x, a))) & \rightarrow f(a, f(a, f(a, b))))
\end{align*}
\]