Approach to check $s \equiv_{\mathcal{E}} t$:

- 1. Generate a TRS \mathcal{R} that is equivalent to \mathcal{E} .
- 2. Reduce s and t as much as possible:

 $s \to_{\mathcal{R}} s_1 \to_{\mathcal{R}} s_2 \to_{\mathcal{R}} \ldots \to_{\mathcal{R}} s_n$ and $t_m \leftarrow_{\mathcal{R}} \ldots \leftarrow_{\mathcal{R}} t_2 \leftarrow_{\mathcal{R}} t_1 \leftarrow_{\mathcal{R}} t$

i.e., s has the normal form $s\downarrow_{\mathcal{R}} = s_n$, t has the normal form $t\downarrow_{\mathcal{R}} = t_m$

3. If
$$s_n = t_m$$
, then return "*True*", else "*False*".

Prerequisites:

• \mathcal{R} terminates,

i.e., $\rightarrow_{\mathcal{R}}$ is *well founded*, i.e., no infinite reduction $t_0 \rightarrow_{\mathcal{R}} t_1 \rightarrow_{\mathcal{R}} \dots$

• \mathcal{R} has the *Church-Rosser property*, i.e., $s \leftrightarrow^*_{\mathcal{R}} t$ implies $s \rightarrow^*_{\mathcal{R}} q \leftarrow^*_{\mathcal{R}} t$.