\rightarrow is *confluent* iff TRS \mathcal{R} is *convergent* iff \mathcal{R} terminates and is confluent ## **Algorithm** WORD_PROBLEM (\mathcal{R}, s, t) Input: convergent TRS \mathcal{R} (equivalent to \mathcal{E}) und $s, t \in \mathcal{T}(\Sigma, \mathcal{V})$. Output: "True" if $s \equiv_{\mathcal{E}} t$, und "False" otherwise. - 1. Reduce s and t in an arbitrary way with $\to_{\mathcal{R}}$ as long as possible. In this way, one obtains the normal forms $s\downarrow_{\mathcal{R}}$ and $t\downarrow_{\mathcal{R}}$. - 2. If $s\downarrow_{\mathcal{R}} = t\downarrow_{\mathcal{R}}$, then return "True". Otherwise, return "False".