
Delete S ⊎ {t =? t} =⇒ S
Reduce Term S ⊎ {f(s1, .., sn) =

? f(t1, .., tn)} =⇒ S ∪ {s1 =
? t1, . . . , sn =? tn}

Exchange S ⊎ {t =? x} =⇒ S ∪ {x =? t}, if t 6∈ V
Reduce Var. S ⊎ {x =? t} =⇒ {uσ =? vσ | u =? v ∈ S} ∪ {x =? t},

if σ = {x/t}, x 6∈ V(t), x ∈ V(S)

{g(f(a), g(x, x)) =? g(x, g(x, y))} =⇒ReduceTerm

{f(a) =? x, g(x, x) =? g(x, y)} =⇒Exchange

{x =? f(a), g(x, x) =? g(x, y)} =⇒ReduceVar.

{x =? f(a), g(f(a), f(a)) =? g(f(a), y)} =⇒ReduceTerm

{x =? f(a), f(a) =? f(a), f(a) =? y} =⇒Delete

{x =? f(a), f(a) =? y} =⇒Exchange

{x =? f(a), y =? f(a)}

Algorithm UNIFY(S)

1. While there exists an S′ with S =⇒ S′, let S := S′ und goto 1.

2. If S is in solved form, return σS. Otherwise, return “False”.



Delete S ⊎ {t =? t} =⇒ S
Reduce Term S ⊎ {f(s1, .., sn) =

? f(t1, .., tn)} =⇒ S ∪ {s1 =
? t1, . . . , sn =? tn}

Exchange S ⊎ {t =? x} =⇒ S ∪ {x =? t}, if t 6∈ V
Reduce Var. S ⊎ {x =? t} =⇒ {uσ =? vσ | u =? v ∈ S} ∪ {x =? t},

if σ = {x/t}, x 6∈ V(t), x ∈ V(S)

Algorithm UNIFY(S)

1. While there exists an S′ with S =⇒ S′, let S := S′ und goto 1.

2. If S is in solved form, return σS. Otherwise, return “False”.

Thm. 5.1.9 (Soundness of the Unification Algorithm)

(a) The relation =⇒ is well founded.

(b) If S =⇒ S′, then we have U(S) = U(S′).

(c) If S is solvable and in normal form w.r.t. =⇒,

then S is in solved form.

(d) The algorithm UNIFY terminates and is correct.


