Algorithm UNIFY(S)

1. While there exists an S' with $S \implies S'$, let $S := S'$ and goto 1.
2. If S is in solved form, return σ_S. Otherwise, return "False".
Delete \(S \uplus \{ t = ? t \} \) \(\rightarrow \) \(S \)

Reduce Term \(S \uplus \{ f(s_1, \ldots, s_n) = ? f(t_1, \ldots, t_n) \} \) \(\rightarrow \) \(S \uplus \{ s_1 = ? t_1, \ldots, s_n = ? t_n \} \)

Exchange \(S \uplus \{ t = ? x \} \) \(\rightarrow \) \(S \uplus \{ x = ? t \} \), if \(t \not\in V \)

Reduce Var. \(S \uplus \{ x = ? t \} \) \(\rightarrow \) \(\{ u\sigma = ? v\sigma \mid u = ? v \in S \} \uplus \{ x = ? t \} \)

, if \(\sigma = \{ x/t \}, x \not\in V(t), x \in V(S) \)

Algorithm **UNIFY(\(S \))**

1. While there exists an \(S' \) with \(S \rightarrow S' \), let \(S := S' \) and goto 1.
2. If \(S \) is in solved form, return \(\sigma_S \). Otherwise, return “False”.

Thm. 5.1.9 (Soundness of the Unification Algorithm)

(a) The relation \(\rightarrow \) is well founded.
(b) If \(S \rightarrow S' \), then we have \(U(S) = U(S') \).
(c) If \(S \) is solvable and in normal form w.r.t. \(\rightarrow \), then \(S \) is in solved form.
(d) The algorithm UNIFY terminates and is correct.