Satisfiability, Entailment:

- Interpretation $\quad I \models t_{1} \equiv t_{2} \quad$ iff $I\left(t_{1}\right)=I\left(t_{2}\right)$
- Algebra $\quad(\mathcal{A}, \alpha) \models t_{1} \equiv t_{2}$ iff $I \models t_{1} \equiv t_{2}$ for all $I=(\mathcal{A}, \alpha, \beta)$
- Set of Equations $\mathcal{E} \models t_{1} \equiv t_{2} \quad$ iff $A \models \mathcal{E}$ implies $A \models t_{1} \equiv t_{2}$
- Word Problem: $\quad t_{1} \equiv \mathcal{E} t_{2} \quad$ iff $\mathcal{E} \models t_{1} \equiv t_{2}$

Substitution:

- Substitution $\sigma: \mathcal{V} \rightarrow \mathcal{T}(\Sigma, \mathcal{V})$ with $\sigma(x) \neq x$ for finitely many $x \in \mathcal{V}$
- Domain: $\operatorname{DOM}(\sigma)=\{x \in \mathcal{V} \mid \sigma(x) \neq x\}$
- Substitution on Terms: $\sigma\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=f\left(\sigma\left(t_{1}\right), \ldots, \sigma\left(t_{n}\right)\right)$
- Matching: s matches t iff $s \sigma=t$

Stability of a Relation $\rightarrow: \quad t_{1} \rightarrow t_{2}$ implies $t_{1} \sigma \rightarrow t_{2} \sigma$

