- \mathcal{R} is *non-overlapping* iff it does not have any critical pairs.
- \mathcal{R} is *left-linear* iff its left-hand sides do not contain multiple occurrences of the same variable.
- \mathcal{R} is *orthogonal* iff it is non-overlapping and left-linear.
- Strong Confluence p implies confluence (Thm. 5.3.6) s t= q r =
- Parallel Reduction Relation: $s \rightrightarrows_{\mathcal{R}} t$ iff there exist
 - a set $\Pi = \{\pi_1, \ldots, \pi_n\}$ of pairwise independent positions of s
 - rules $l_i \to r_i \in \mathcal{R}$
 - substitutions σ_i

with $s|_{\pi_i} = l_i \sigma_i$ and $t = s[r_1 \sigma_1]_{\pi_1} \dots [r_n \sigma_n]_{\pi_n}$.