$$
\begin{array}{rlr}
\mathrm{f}(x, \mathrm{f}(y, z)) & \rightarrow \mathrm{f}(\mathrm{f}(x, y), z) \\
\mathrm{f}(x, \mathrm{e}) & \rightarrow x & (G 1) \tag{G2}\\
\mathrm{f}(x, \mathrm{i}(x)) & \rightarrow \mathrm{e} & (G 3)
\end{array}
$$

Critical Pairs:

$$
\begin{aligned}
& \quad{ }^{(G 1)} \mathrm{f}\left(x^{\prime}, \mathrm{f}(x, \mathrm{f}(y, z))\right){ }_{(G 1)} \\
& \mathrm{f}\left(\mathrm{f}\left(x^{\prime}, x\right), \mathrm{f}(y, z)\right) \\
& (G 1) \downarrow \\
& \mathrm{f}\left(\mathrm{f}\left(\mathrm{f}\left(x^{\prime}, x\right), y\right), z\right)
\end{aligned}
$$

Algorithm CONFLUENCE (\mathcal{R})

Input: A terminating TRS \mathcal{R}.
Output: "True", if \mathcal{R} is confluent and "False", otherwise

1. Compute all critical pairs $C P(\mathcal{R})$ of \mathcal{R}.
2. If $C P(\mathcal{R})=\varnothing$, then return "True" and stop.
3. Choose $\langle s, t\rangle \in C P(\mathcal{R})$.
4. Reduce s and t as long as possible. In this way, one obtains the normal forms s^{\prime} and t^{\prime}.
5. If $s^{\prime} \neq t^{\prime}$ then return "False" and stop.
6. Let $C P(\mathcal{R})=C P(\mathcal{R}) \backslash\{\langle s, t\rangle\}$.
7. Go back to Step 2.
