Thm 3.2.12: $s \equiv \mathcal{E} t$ iff $s \equiv t \in C C^{S}(\mathcal{E})$

- $S=\operatorname{Subterms}(\mathcal{E}) \cup \operatorname{Subterms}(s) \cup S u b t e r m s(t)$
- $\mathcal{E}_{0}^{S}=(\mathcal{E} \cup R) \cap S \times S$
- $\mathcal{E}_{i+1}^{S}=\left(\mathcal{E}_{i}^{S} \cup S\left(\mathcal{E}_{i}^{S}\right) \cup T\left(\mathcal{E}_{i}^{S}\right) \cup C\left(\mathcal{E}_{i}^{S}\right)\right) \cap S \times S$
- Congruence closure w.r.t. $S: C C^{S}(\mathcal{E})=\bigcup_{i \in \mathbb{N}} \mathcal{E}_{i}^{S}$

$$
\begin{aligned}
& \mathcal{E}=\{\mathrm{i} \equiv \mathrm{j}, \mathrm{k} \equiv \mathrm{I}, \mathrm{f}(\mathrm{i}) \equiv \mathrm{g}(\mathrm{k}), \mathrm{j} \equiv \mathrm{f}(\mathrm{j}), \mathrm{m} \equiv \mathrm{~g}(\mathrm{I})\} \quad s=\mathrm{f}(\mathrm{~m}) \quad t=\mathrm{g}(\mathrm{k}) \\
& S=\{\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{I}, \mathrm{~m}, \mathrm{f}(\mathrm{i}), \mathrm{f}(\mathrm{j}), \mathrm{f}(\mathrm{~m}), \mathrm{g}(\mathrm{k}), \mathrm{g}(\mathrm{I})\} \\
& \mathcal{E}_{0}^{S}=\mathcal{E} \cup\{\mathrm{i} \equiv \mathrm{i}, \ldots, \mathrm{~g}(\mathrm{I}) \equiv \mathrm{g}(\mathrm{I})\} \\
& \mathcal{E}_{1}^{S}=\mathcal{E}_{0}^{S} \cup\{\mathrm{j} \equiv \mathrm{i}, \ldots, \mathrm{~g}(\mathrm{I}) \equiv \mathrm{m}\} \cup\{\mathrm{i} \equiv \mathrm{f}(\mathrm{j})\} \cup\{\mathrm{f}(\mathrm{i}) \equiv \mathrm{f}(\mathrm{j}), \mathrm{g}(\mathrm{k}) \equiv \mathrm{g}(\mathrm{I})\}
\end{aligned}
$$

$\mathcal{E}=\{\mathrm{i} \equiv \mathrm{j}, \mathrm{k} \equiv \mathrm{I}, \mathrm{f}(\mathrm{i}) \equiv \mathrm{g}(\mathrm{k}), \mathrm{j} \equiv \mathrm{f}(\mathrm{j}), \mathrm{m} \equiv \mathrm{g}(\mathrm{I})\} \quad s=\mathrm{f}(\mathrm{m}) \quad t=\mathrm{g}(\mathrm{k})$
$S=\{\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}, \mathrm{m}, \mathrm{f}(\mathrm{i}), \mathrm{f}(\mathrm{j}), \mathrm{f}(\mathrm{m}), \mathrm{g}(\mathrm{k}), \mathrm{g}(\mathrm{l})\}$
Due to $\mathcal{E}:\{\mathrm{i}, \mathrm{j}\},\{\mathrm{k}, \mathrm{l}\},\{\mathrm{f}(\mathrm{i}), \mathrm{g}(\mathrm{k})\},\{\mathrm{j}, \mathrm{f}(\mathrm{j})\},\{\mathrm{m}, \mathrm{g}(\mathrm{I})\}$,
Due to $S:\{\mathrm{i}\},\{\mathrm{j}\},\{\mathrm{k}\},\{\mathrm{I}\},\{\mathrm{m}\},\{\mathrm{f}(\mathrm{i})\},\{\mathrm{f}(\mathrm{j})\},\{\mathrm{f}(\mathrm{m})\},\{\mathrm{g}(\mathrm{k})\},\{\mathrm{g}(\mathrm{I})\}$
Step 1: equivalence relation

$$
S_{0}:\{\mathrm{i}, \mathrm{j}, \mathrm{f}(\mathrm{j})\},\{\mathrm{k}, \mathrm{l}\},\{\mathrm{f}(\mathrm{i}), \mathrm{g}(\mathrm{k})\},\{\mathrm{m}, \mathrm{~g}(\mathrm{l})\},\{\mathrm{f}(\mathrm{~m})\}
$$

Step 2: congruence
$\{\mathrm{i}, \mathrm{j}, \mathrm{f}(\mathrm{j})\},\{\mathrm{k}, \mathrm{l}\},\{\mathrm{f}(\mathrm{i}), \mathrm{g}(\mathrm{k})\},\{\mathrm{m}, \mathrm{g}(\mathrm{l})\},\{\mathrm{f}(\mathrm{m})\}$,
$\{\mathrm{f}(\mathrm{i}), \mathrm{f}(\mathrm{j})\},\{\mathrm{g}(\mathrm{k}), \mathrm{g}(\mathrm{I})\}$
Step 3: equivalence relation

$$
S_{1}:\{\mathrm{i}, \mathrm{j}, \mathrm{f}(\mathrm{j}), \mathrm{f}(\mathrm{i}), \mathrm{g}(\mathrm{k}), \mathrm{g}(\mathrm{l}), \mathrm{m}\},\{\mathrm{k}, \mathrm{l}\},\{\mathrm{f}(\mathrm{~m})\}
$$

Step 4: congruence

$$
\begin{aligned}
& \{\mathrm{i}, \mathrm{j}, \mathrm{f}(\mathrm{j}), \mathrm{f}(\mathrm{i}), \mathrm{g}(\mathrm{k}), \mathrm{g}(\mathrm{I}), \mathrm{m}\},\{\mathrm{k}, \mathrm{l}\},\{\mathrm{f}(\mathrm{~m})\}, \\
& \{\mathrm{f}(\mathrm{i}), \mathrm{f}(\mathrm{j})\},\{\mathrm{f}(\mathrm{i}), \mathrm{f}(\mathrm{~m})\},\{\mathrm{f}(\mathrm{j}), \mathrm{f}(\mathrm{~m})\},\{\mathrm{g}(\mathrm{k}), \mathrm{g}(\mathrm{I})\}
\end{aligned}
$$

Step 5: equivalence relation

$$
S_{2}:\{\mathrm{i}, \mathrm{j}, \mathrm{f}(\mathrm{j}), \mathrm{f}(\mathrm{i}), \mathrm{g}(\mathrm{k}), \mathrm{g}(\mathrm{I}), \mathrm{m}, \mathrm{f}(\mathrm{~m})\},\{\mathrm{k}, \mathrm{l}\}
$$

