4.2 Decidability Results for Termination

Theorem 4.2.1. (Undecidability of Halting Problem for TRSs)

Let R be a TRS and t be a term. The question whether t does not have infinite reductions w.r.t. R is undecidable, but semi-decidable. The question whether R terminates (universal halting problem, i.e., whether all terms only have finite reductions) is not even semi-decidable.

Proof: Term rewriting is Turing-complete. Therefore, the undecidability results for Turing-complete languages also hold for term rewriting. \(\blacksquare\)

We start with a special case of TRSs where termination is decidable: right-ground TRSs, i.e., no variables on right-hand sides of rules.

Example 4.2.2

\[
\begin{align*}
\text{and} (\text{true}, \text{true}) & \rightarrow \text{true} \\
\text{and} (x, \text{false}) & \rightarrow \text{false} \\
\text{and} (\text{false}, x) & \rightarrow \text{and} (\text{true}, \text{not} (\text{true})) \\
\text{not} (\text{false}) & \rightarrow \text{true} \\
\text{not} (\text{true}) & \rightarrow \text{and} (\text{false}, \text{false})
\end{align*}
\]
The TRS is not terminating:
\[\text{not}(\text{true}) \Rightarrow \text{and}(f,f) \Rightarrow \text{and}(t, \text{not}(t)) \Rightarrow \text{and}(t, \text{and}(f,f)) \Rightarrow \ldots \]

Lemma 4.2.3 (Termination of right-ground TRSs)

Let \(R \) be a right-ground TRS. Then \(R \) terminates if there is no rule \(l \Rightarrow r \in R \) with \(r \Rightarrow^{+} t \) such that \(t \models r \).

Proof:

\(\Rightarrow \): If \(r \Rightarrow^{+} t \) with \(t \models r \), then \(R \) does not terminate:

\[r \Rightarrow^{+} t \Rightarrow e \Rightarrow^{+} t \Rightarrow [e] \Rightarrow^{+} t \Rightarrow [e] \Rightarrow^{+} \ldots \]

\(\Leftarrow \): Let there be no rule \(l \Rightarrow r \in R \) such that \(r \Rightarrow^{+} t \) with \(t \models r \). We have to show that \(R \) terminates by induction on the number of rules in \(R \).

Ind. Base: \(R = \emptyset \Rightarrow R \) is trivially terminating.

Ind. Step: \(R \neq \emptyset \). Assume that \(R \) is not terminating.

Let \(t \) be a minimal term that starts an infinite reduction (i.e., \(t \) does not terminate, but all proper subterms of \(t \) terminate):

\[t = t_0 \Rightarrow^{R} t_1 \Rightarrow^{R} t_2 \Rightarrow^{R} \ldots \]

Since \(t \) is minimal, there must be some reduction step at the root position:

\[t = t_0 \Rightarrow^{R} \ldots \Rightarrow^{R} l \Rightarrow^{R} r \Rightarrow^{R} \ldots \] with \(l \models r \).
Thus: there is a rule \(l \rightarrow r \in R \) such that \(r \) starts an infinite reduction: \(r \xrightarrow{\text{SR}^1} r \xrightarrow{\text{SR}^2} \ldots \)

Case 1: The rule \(l \rightarrow r \) is not used in the infinite reduction of \(r \). \(\cap R \setminus \{l \rightarrow r}\) is also non-terminating. Contradiction to the ind. hypothesis, since \(\cap R \setminus \{l \rightarrow r\} \) has less rules than \(R \).

Case 2: \(l \rightarrow r \) is used in the infinite reduction of \(r \):

\[
\begin{align*}
\quad & r \xrightarrow{\text{SR}^i} t_j \left[\ell \xrightarrow{\text{SR}^j} t_k \right] _\Pi \xrightarrow{\text{SR}^i} r \xrightarrow{\text{SR}^j} \ldots \\
\text{Thus:} & \quad r \xrightarrow{\text{SR}^i} t_j \left[\ell \xrightarrow{\text{SR}^j} \right] _\Pi \quad \text{which contradicts the prerequisites.}
\end{align*}
\]

The alg. `RIGHT_GROUND_TERMINATION` uses Lemma 4.2.3 in order to decide termination for right-ground TSSs. In contrast to full term rewriting, termination is decidable for right-ground TSSs because of 2 reasons:

1. We only have to check the right-hand sides of (finitely many) rules. If they terminate, then all terms terminate.

For general TSSs, this is not true:
2. If a rhs \(r \) is non-terminating, then we can detect after finitely many steps, because \(r \not\rightarrow^* \epsilon \supseteq r \).

For general TNSs, this is not true.

\(\text{Ex 4.24 } \) Illustrate RIGHTGROUND-TERM:

\(\text{and}(t, t) \rightarrow t \)
\(\text{and}(x, t) \rightarrow t \)
\(\text{and}(t, x) \rightarrow a(t, n(t)) \)
\(n(t) \rightarrow t \)
\(n(t) \rightarrow a(t, t) \)

\(T_1 = \{ t \} \)
\(T_2 = \{ t \} \)
\(T_3 = \{ a(t, n(t)) \} \)
\(T_4 = \{ t \} \)
\(T_5 = \{ a(t, t) \} \)

\(T_1 = \emptyset \)
\(T_2 = \emptyset \)
\(T_3 = \{ a(t, a(t, t)) \} \)
\(T_4 = \emptyset \)
\(T_5 = \{ t, a(t, n(t)) \} \)

\(T_1 = \emptyset \)
\(T_2 = \emptyset \)
\(T_3 = \{ a(t, t), a(t, a(t, n(t))) \} \)
\(T_4 = \emptyset \)
\(T_5 = \{ a(t, a(t, t)) \} \)

False
So we simply construct search trees:

V_1 V_2 V_3 ...

If TNS terminates: all these search trees are finite, alg. stops after a while and returns "True"

If TNS doesn’t terminate: by Lemma 4.2.3. some V_i reduces to a superterm of V_i so alg. stops after a while and returns "False".

Thm 4.2.5 (Decidability of Termination for Right-Ground TNSs)

Let S be a TNS with $D(y) = \emptyset$ for all $l \rightarrow r \in S$. Then termination of S is decidable and RIGHT-GROUND-TERMINATION is a decision procedure.