The embedding order is too weak, but it is a good starting point for the development of suitable reduction relations. \(\Rightarrow \) Special notion for reduction orders that contain the embedding order.

Def 4.4.1 (Simplification Order (Dershowitz, 1987))

A reduction order \(\succ \) where \(S \succ t \) holds whenever \(S \succ \text{emb} t \), is called a simplification order.

If an order contains the embedding order, then there is a "simple" way to prove its well-foundedness: one only has to check that the order is irreflexive (\(t \nRightarrow t \) for all \(t \)).

Reason: Kruskal's Theorem.

Thm 4.4.2 (Kruskal's Theorem)

As usual, the signature \(\Sigma \) is finite.

(a) For any infinite sequence of ground terms \(t_0, t_1, t_2, ... \), there exist \(i, j \in \mathbb{N} \) with \(i < j \) such that \(t_i \text{emb} t_j \).

(b) Every stable monotonic transitive...

\[\text{minus}(0, 0), \text{succ}(0), 0, \text{minus}(s(0), 0) \]
(b) Every stable, monotonic, transitive relation > that satisfies the subterm property \(f(x_1, \ldots, x_n) > x_i \) for all \(1 \leq i \leq n \) contains the embedding order (i.e., \(s \succemb t \Rightarrow s > t \)).

(c) Every stable, monotonic, transitive, irreflexive relation that satisfies the subterm property is well founded. Thus, it is a simplification order.

Proof: (a) See literature.

(b) To show: \(S \succemb T \) implies \(S > T \)

(Simple proof by structural induction on \(S \).)

(c) \(> \) is stable, monotonic, transitive, contains \(\succemb \), irreflexive.

To show: \(> \) is well founded.
Assume that there is an infinite sequence
\[t_0 > t_1 > t_2 > \ldots \]
Let \(\sigma \) replace all variables in \(t_0, t_1, \ldots \) by ground terms. Then stability of \(> \) implies:
\[t_0 > t_1 \sigma, t_2 \sigma > \ldots \]

By Knuth’s Theorem (a) there exist \(i, j \) such that
\[t_i \sigma \succemb t_j \sigma \]

By Knuth’s Theorem (a) there exist \(i, j \) such that
\[t_i \sigma \succemb t_j \sigma \]
Since τ contains τ_2, we also have: $t_1 \tau \leq t_j \tau$.

Thus: $t_i \tau_2 \leq t_j \tau_2 \leq t_i \tau$

By transitivity of τ: $t_i \tau > t_i \tau$

which contradicts irreflexivity of τ.

Nax: Define suitable relations and prove that they satisfy stability, monotonicity, transitivity, irreflexivity, subterm property.

Ideas: Take the embedding order and improve its two main drawbacks:

- Weak comparison of terms S and T if
 \[S = f(...), T = g(...), \]
 weak comparison of terms S and T if
 \[S = f(...), T = f(...). \] Here, one needs better ways to compare tuples of terms.

There are two main ways to compare tuples:

- lexicographically or

- as multisets

Lexicographic combination of two relations allows us to compare tuples of objects.

Def 443 (Lexicographic Combination of Relations)

Let \succ_1 be a relation on a set T_1 and \succ_2 be a relation
Let \(\succeq_1\) be a relation on a set \(T_1\) and \(\succeq_2\) be a relation on a set \(T_2\) (i.e., \(\succeq_i \subseteq T_i \times T_i\)). Then the **lexicographic combination** \(\succeq_{1 \times 2}\) is a relation on \(T_1 \times T_2\), which is defined as follows:

\[(S_1, S_2) \succeq_{1 \times 2} (t_1, t_2) \text{ iff } S_1 \succeq_1 t_1 \text{ or } (S_1 = t_1 \text{ and } S_2 \succeq_2 t_2)\]

Similarly, one can define the lexicographic combination of arbitrary many relations \(\succeq_1, \ldots, \succeq_n:\)

\[(S_1, \ldots, S_n) \succeq_{1 \times \ldots \times n} (t_1, \ldots, t_n) \text{ iff there exists an } i \in \{1, \ldots, n\} \text{ with } S_i \succeq_i t_i \text{ and } S_j = t_j \text{ for all } 1 \leq j \neq i.

The \(n\)-fold lexicographic combination of a relation \(\succeq\) with itself is denoted \(\succeq^n\). (This is the case where \(\succeq = \succeq_1 = \ldots = \succeq_n\)).

Example 4.4.4. \((3, 5) \ (\succeq^2_{1 \times}) \lex (2, 6) \ (\succeq^2_{1 \times}) \lex (2, 5)\)

Words in a lexicon are also ordered lexicographically. Let \(\succeq_{\text{alph}}\) be the order of letters in the alphabet, i.e., \(\alpha \succ_{\text{alph}} \beta \succ_{\text{alph}} \ldots \succ_{\text{alph}} \zeta\).

\(\text{hans} \ (\succeq_{\text{alph}})^4 \lex \text{hugo} \ (\succeq_{\text{alph}})^4 \lex \text{juli}.

Well-foundedness is maintained under lexicographic combination.
Graphic combinations.

But the order in a lexicon is not well founded:

\[a > ba > bba > bbb a > \ldots \]

Reason: Here, the length of the tuples is not bounded.

Then 4.45 (Well-Foundedness of Lexicographic Combinations)

Let \(\succ_{\alpha} \) be a relation on \(T_1 \neq \emptyset \) and \(\succ_{\beta} \) be a relation on \(T_2 \neq \emptyset \). Then \(\succ_{\alpha} \) and \(\succ_{\beta} \) are well founded if their lexicographic combination \(\succ_{\alpha \times \beta} \) is well founded.

Proof: "\(\Leftarrow \)" Let \(\succ_{\alpha \times \beta} \) be well founded.

If \(\succ_{\alpha} \) were not well founded, then there would exist a sequence \(\mu_0 \succ_{\alpha} \mu_1 \succ_{\alpha} \mu_2 \succ_{\alpha} \mu_3 \succ_{\alpha} \ldots \)

Let \(v \in T_2 \). Then \((\mu_0, v) \succ_{\alpha \times \beta} (\mu_1, v) \succ_{\alpha \times \beta} (\mu_2, v) \succ_{\alpha \times \beta} \ldots \)

Similarly, if \(\succ_{\beta} \) were not well founded, then there would exist a sequence \(v_0 \succ_{\beta} v_1 \succ_{\beta} v_2 \succ_{\beta} \ldots \)

Let \(\mu \in T_1 \). Then \((\mu, v_0) \succ_{\alpha \times \beta} (\mu, v_1) \succ_{\alpha \times \beta} (\mu, v_2) \succ_{\alpha \times \beta} \ldots \)

"\(\Rightarrow \)" Assume that \(\succ_{\alpha \times \beta} \) were not well founded:

\((\mu_0, v_0) \succ_{\alpha \times \beta} (\mu_1, v_1) \succ_{\alpha \times \beta} (\mu_2, v_2) \succ_{\alpha \times \beta} \ldots \)

Thus: \(\mu_0 \succ_{\alpha} \mu_1 \succ_{\alpha} \mu_2 \succ_{\alpha} \ldots \)

Since \(\succ_{\alpha} \) is well founded, there is an \(i \in \mathbb{N} \) such that
\[M_i = M_{i+1} = M_{i+2} = \ldots \]

Thus: \[V_i \succ V_{i+1} \succ V_{i+2} \succ \ldots \]

This contradicts well-foundedness of \(\succ \).

Now we define the lexicographic path order, which is a more powerful simplification order than the embedding order.

- \(\mathcal{LPO} \) should again contain the subterm relation \(\mathcal{D} \).
- First condition for \(\mathcal{LPO} \) is the same as for \(\mathcal{D} \).
- \(\mathcal{D} \) is weak when comparing terms \(f(s_1, \ldots, s_n) \) and \(g(t_1, \ldots, t_m) \), e.g., \(\text{plus}(\text{succ}(x), y) \) \(\succ \) \(\text{succ}(\text{plus}(x, y)) \).

Solution: Assign different weights to function symbols.

We use an order \(I \) on function symbols (precedence).

If \(f \succ g \), then \(f(s_1, \ldots, s_n) \succ \mathcal{LPO} g(t_1, \ldots, t_m) \).

To make \(\mathcal{LPO} \) well-founded, \(I \) must also be well founded.

If \(f \succ g \), then: \(f(x) \succ \mathcal{LPO} g(f(x)) \)

By first condition: \(g(f(x)) \succ \mathcal{LPO} f(x) \)

Solution:

\[f(s_1, \ldots, s_n) \succ \mathcal{LPO} g(t_1, \ldots, t_m) \]

if \(f \succ g \) and
\[f(s_1, \ldots, s_n) \gtrdot_{lpo} t_1, \ldots, f(s_1, \ldots, s_n) \gtrdot_{lpo} t_m \]

\(S_{\text{lex}} \) is also weak when comparing terms that start with the same \(\text{fct. symbol} \):

\[f(s_1, \ldots, s_n) \gtrdot_{lpo} f(t_1, \ldots, t_n) \text{ if } (s_1, \ldots, s_n) \gtrdot_{lpo} (t_1, \ldots, t_n) \]

This means: \(s_1 = t_1, s_2 = t_2, \ldots, s_{i-1} = t_{i-1}, S_i \gtrdot_{lpo} t_i \)

Is this enough to guarantee well-foundedness of \(lpo \)?

\[f(\text{succ}(0), 0) \gtrdot_{lpo} f(0, f(\text{succ}(0), 0)) \]

Since \(\text{succ}(0) \gtrdot_{lpo} 0 \)

To prevent this, we define:

\[f(s_1, \ldots, s_n) \gtrdot_{lpo} f(t_1, \ldots, t_n) \text{ if } \]

\[s_1 = t_1, \ldots, s_{i-1} = t_{i-1}, S_i \gtrdot_{lpo} t_i, \]

\[f(s_1, \ldots, s_n) \gtrdot_{lpo} t_{i+1}, \ldots, f(s_1, \ldots, s_n) \gtrdot_{lpo} t_n \]

\[\text{Def 4.4.6 (lexicographic Path Order, Kamin+Levy 1980)} \]

- see slide -

We will show that the \(\text{CPO} \) is a simplification
order \Rightarrow LPO can be used for termination proofs of TRSs.

\text{Ex 4.47}

\text{plus} (\sigma, y) \rightarrow y
\text{plus} (s(x), y) \rightarrow s(\text{plus}(x, y))
\text{times} (\sigma, y) \rightarrow \sigma
\text{times} (s(x), y) \rightarrow \text{plus}(y, \text{times}(x, y))

Rules 1 and 3 are decreasing w.r.t. \text{Lpo} since \text{Lpo} contains 0.
\text{plus}(s(x), y) \succ_{\text{Lpo}} s(\text{plus}(x, y))
\text{times}(s(x), y) \succ_{\text{Lpo}} \text{plus}(y, \text{times}(x, y))
\text{times}(s(x), y) \succ_{\text{Lpo}} \text{plus}(y, \text{times}(x, y))
\text{times}(s(x), y) \succ_{\text{Lpo}} \text{times}(x, y)

So this shows that all rules can be oriented by LPO if one uses a precedence with \text{times} \preceq \text{plus} \succ \text{succ}.

To prove termination with LPO:
• start with empty precedence I.
• Orient one rule after another and extend I on demand.
• Whenever I is extended, make sure that I remains well founded.

Checking whether a TNS can be oriented with some LPO is decidable (since \(\Sigma \) is finite and thus there are only finitely many possible precedences). (This is an NP-complete problem that can be implemented efficiently using SAT solvers.)

Ex. 4.48

\[
\text{sum}(0, y) \rightarrow y
\]

\[
\text{sum}(s(x), y) \rightarrow \text{sum}(x, s(y))
\]

The embedding order fails for the second rule: we have \(s(x) \geq_{emb} x \), but \(y \not\geq_{emb} s(y) \).

But:

\[
\text{sum}(s(x), y) \geq_{epo} \text{sum}(x, s(y)),
\]

Since \(s(x) \geq_{epo} x \), \(\text{sum}(s(x), y) \geq_{epo} s(y) \) requires \(\text{sum} I \succ_{epo} \).

Now we prove that LPO can indeed be used for termination proofs (i.e., that it is a simplification order).
Theorem 4.4.9 (Properties of LPO)

The lexicographic path order is a simplification order.

Proof: We have to prove that LPO

- has subterm property
- is monotonic
- is stable
- is transitive
- is irreflexive

This implies that LPO is a simplification order by Thm 4.4.2.

Subterm Property

\[f(x_1, \ldots, x_n) \geq_{LPO} x_i, \text{ since } x_i \geq_{LPO} x_i. \]

Monotonicity

Show that \(s \geq_{LPO} t \) implies \(q[s]_\pi \geq_{LPO} q[t]_\pi \).

Can easily be proved by structural induction on \(\pi \).

Stability

Show that \(s \geq_{LPO} t \) implies \(s_0 \geq_{LPO} t_0 \).

We prove this claim by structural induction with the relation \(\geq^{2}_{lex} \). It is well-founded by Thm 4.4.5.

This means: When proving the claim for \((s, t)\), we can use as induction hypothesis that it already holds for all \((s', t')\) where \(s \geq^{2}_{lex} s' \) or \(s = s' \) and \(t \geq^{2}_{lex} t' \).

Case analysis according to the def. of LPO.
We have \(s \geq_{lep_0} t \) and want to show \(s \\geq_{lep_0} t \).

Case 1: \(s = f(s_1, \ldots, s_n), \ s_i \geq_{lep_0} t \)

By ind. hyp.: \(s_i \geq_{lep_0} t \)

Thus: \(s = f(s_1, \ldots, s_n) \geq_{lep_0} t \).

Case 2: \(s = f(s_1, \ldots, s_n), \ t = g(t_1, \ldots, t_m), \ f \geq_{lep_0} g \)

By ind. hyp.: \(s \geq_{lep_0} t \)

Thus: \(s = f(s_1, \ldots, s_n), \ t = g(t_1, \ldots, t_m), \ f \geq_{lep_0} g, \ s \geq_{lep_0} t \)

\(\Rightarrow \) \(s \geq_{lep_0} t \)

Case 3: \(s = f(s_1, \ldots, s_i, \ldots, s_n), \ t = f(s_1, \ldots, s_i, \ldots, s_n), \ s_i \geq_{lep_0} t_i \)

By ind. hyp.: \(s_i \geq_{lep_0} t_i \)

Thus: \(s \geq_{lep_0} t \)

\(\Rightarrow \) \(s \geq_{lep_0} t \)

Transitivity: can be proved by induction on \(\Delta_3 \).

Irreflexivity: We show that \(s \nleq_{lep_0} s \) holds by structural induction on \(s \).

Case 1: \(s = f(s_1, \ldots, s_n), \ s_i \geq_{lep_0} s \)

We also have \(s \geq_{lep_0} s_i \).

This implies \(s_i \geq_{lep_0} s_i \) by transitivity. \(y \) to the ind. hypothesis.

Case 2: \(s = f(s_1, \ldots, s_n), \ f \geq f \) would contradict well-founded.
Contradict well-foundedness of \mathcal{I}.

Case 3: $S = f(S_1, \ldots, S_n)$ with $S_i \geq_{\text{po}} S_i \stackrel{\text{ind. hyp.}}{\Rightarrow} S_i$.

LPO compares arguments lexicographically from left to right. But one could also compare arguments from right to left (or in any other permutation).

\[
\begin{align*}
pred(O) & \rightarrow O \\
pred(succ(x)) & \rightarrow x \\
minus(x, O) & \rightarrow x \\
minus(x, succ(y)) & \rightarrow minus(pred(x), y)
\end{align*}
\]

The last rule is not decreasing with \geq_{po}, because $x \not\geq_{\text{po}} pred(x)$.

Solution: for minus, the arguments should be compared from right to left. Then

\[
\begin{align*}
\minus(x, s(y)) & \geq \minus(p(x), y), \\
\text{since } S(y) & \geq y \text{ and } \minus(x, s(y)) \geq p(y) \text{ (if } minus \rightarrow pred)
\end{align*}
\]

To make LPO stronger: LPOS (LPO with status).

- every function symbol of arity n gets a
status (a permutation of 1,..,n)

- when comparing two terms \(f(\ldots) \) and \(g(\ldots) \),
 use lexicographic comparison of the arguments
 where the status of \(f \) determines in which order
 the arguments are compared.

In the example: minus would need status \(< 2,1 \) \)

\[
\text{first compare the second arguments, then the first}
\]

sum would need status \(< 1,2 \)